ChemInform Abstract: Critical Particle Size and Phase Transformation in Zirconia: Transmission Electron Microscopy and X-Ray Diffraction Studies.

ChemInform ◽  
2010 ◽  
Vol 22 (6) ◽  
pp. no-no
Author(s):  
R. SRINIVASAN ◽  
L. RICE ◽  
B. H. DAVIS
2002 ◽  
Vol 01 (05n06) ◽  
pp. 501-505 ◽  
Author(s):  
JU YOUNG LEE ◽  
YOUNG SOO KANG ◽  
YONG JOO KIM

Materials such as CdS and CdSe inorganic nanoparticles have photoluminescence. Sodium oleate has been used as effective stabilizers for the synthesis of CdS and CdSe nanoparticles in water by autoclave method. Photoluminescence of CdS and CdSe with particle size of 5–14 nm showed λ max at 520 nm and 600 nm, respectively, when were excited at 365 nm. These nanoparticles doped into the PVA resulted in the organic/inorganic films ( PVA/CdS , CdSe ). Photoluminescence, X-ray diffraction and transmission electron microscopy were employed for their characterization.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 663-669 ◽  
Author(s):  
GANGQIANG ZHU ◽  
HONGYAN MIAO ◽  
GUOQIANG TAN ◽  
YUN LIU ◽  
AO XIA

Potassium bismuth titanate nanoparticles were prepared by the hydrothermal method using Ti ( C 4 H 9 O )4 and Bi ( NO 3)3·5 H 2 O as raw materials in alkaline solution at temperatures of 160–200°C. The crystal phase, particle size, morphology and dispersion of the particles were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the particles with sizes of about 50–100 nm in diameter are well-dispersed K 0.5 Bi 0.5 TiO 3 (KBT) crystals of tetragonal structure, and the alkaline concentration and the temperature of solutions have great effects on the phase composition and morphology of the resultant particles. We could gain the KBT phase of high purity when the concentration of KOH is about 8–12 M and the reaction temperature is about 170–180°C.


2011 ◽  
Vol 311-313 ◽  
pp. 545-548 ◽  
Author(s):  
Yu Jiang Wang ◽  
Yong Gang Wang

NiWO4 nanoparticles were successfully synthesized by a molten salt method at 270°C. The as-prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and exhibited a pure phase NiWO4 with about 50 nm in particle size and uniform nearly-spherical particle shape.


2010 ◽  
Vol 03 (03) ◽  
pp. 173-176 ◽  
Author(s):  
YIBO WANG ◽  
HUAJUN SUN ◽  
JING ZHOU ◽  
BO LI ◽  
CHENGYONG ZHANG ◽  
...  

Highly oriented Bi2Fe4O9 nanosheets can be fabricated with Fe(NO3)3 ⋅ 9H2O and Bi(NO3)3 ⋅ 5H2O using the low-temperature hydrothermal method. The as-prepared powders are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), which exhibit an excellent orientation along the (00l) planes. The leakage current density and dielectric properties of the nanosheet samples are measured by Radiant Precision Workstation and HP4291B Impedance Analyzer, respectively. The effects of NaOH concentration on the phase transformation, sheet size and morphologies of the Bi2Fe4O9 crystallites are studied in this paper.


2002 ◽  
Vol 17 (5) ◽  
pp. 1224-1231 ◽  
Author(s):  
Quan Li ◽  
I. W. Kim ◽  
S. A. Barnett ◽  
L. D. Marks

AlN/VN superlattices with different periods were studied using x-ray diffraction and transmission electron microscopy (TEM). A phase transformation of the AlN from an epitaxially stabilized rock-salt structure to a hexagonal wurtzite structure was observed for an AlN layer thickness greater than 4 nm. A structural model is proposed on the basis of TEM results for the orientation of the transformed phase. The VN layer grown on top of the hexagonal AlN was observed to be reoriented compared to that in the stabilized B1-AlN/VN. The VN nucleated by taking the w-AlN(002) plane as its (111) plane instead of the (002) plane.


2010 ◽  
Vol 146-147 ◽  
pp. 26-33 ◽  
Author(s):  
Ming Zhou Xu ◽  
Jian Jun Wang ◽  
Li Jun Wang ◽  
Wen Fang Cui ◽  
Chun Ming Liu

Microstructural evolution of a metastable 18Cr12Mn0.55N austenitic stainless steel during compression deformation was investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM observation showed the occurrence of deformation-induced phase transformation and atypical deformation twin, the deformation-induced phase cannot be identified as austenite or martensite. XRD test showed that the amount of deformation-induced phase is less than the detectable limit of XRD.


2002 ◽  
Vol 17 (9) ◽  
pp. 2197-2200 ◽  
Author(s):  
Juan Yang ◽  
Sen Mei ◽  
José M.F. Ferreira

Well-dispersed anatase and rutile nano-particles were prepared via hydrothermal treatment of tetrabutylammonium hydroxide-peptized and HNO3-peptized sols at 240 °C. A broad particle size distribution of anatase crystals was observed in the nonpeptized TiO2 species hydrothermally treated at 240 °C. X-ray diffraction and transmission electron microscopy, as well as zeta potential measurement, were used to characterize the particles. The formation of the well-dispersed anatase and rutile particles from the peptized samples could be attributed to (i) homogeneous distribution of the component in the peptized sols, and (ii) the high long-range electrostatic forces between particles in the presence of both peptizers, which were not present in the nonpeptized samples. This work provided a new way to prepare nano-crystals of titania.


2014 ◽  
Vol 887-888 ◽  
pp. 139-142
Author(s):  
Yang Rong Yao ◽  
Ying Zheng ◽  
Xu Chun Song

In the present paper, the γ-Fe2O3 nanoparticles have been successfully synthesized by the co-precipitation process and followed by calcination. The X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the as prepared nanoparticles. The results show that the phase structure of the nanoparticles is γ-Fe2O3 with the particle size ranging from 40 to 50 nm. The catalytic activity of the γ-Fe2O3 was investigated by decomposing the phenol in liquid phase. The results showed that γ-Fe2O3 has the highest catlytic activity.


2008 ◽  
Vol 368-372 ◽  
pp. 635-637
Author(s):  
Jian Feng Huang ◽  
Li Yun Cao ◽  
Jian Peng Wu ◽  
Hai Yan He

Nanocrystalline Y2BaCuO5 was prepared by a co-precipitation method with aid of ultrasonic irradiation using Y2O3, CuCl2 and BaCl2 as source materials. The crystallization and morphology of the prepared nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. Results showed that Y2BaCuO5 monophase can be prepared at 900°C with NaOH + NaCO3 mixture as precipitator. Particle size of Y2BaCuO5 crystallites decreases with the increase of sonicating power. Around 30 nm Y2BaCuO5 crystallites could be achieved when sonicating power increased to 300 W.


Sign in / Sign up

Export Citation Format

Share Document