ChemInform Abstract: Electrosynthesis of Ammonium Persulfate at a Glassy Carbon Anode.

ChemInform ◽  
2010 ◽  
Vol 26 (40) ◽  
pp. no-no
Author(s):  
G. F. POTAPOVA ◽  
O. V. SHESTAKOVA ◽  
A. I. SOROKIN ◽  
S. A. ASATUROV
1988 ◽  
Vol 53 (12) ◽  
pp. 3164-3170 ◽  
Author(s):  
Jaromír Hlavatý ◽  
Jiří Volke

Electrolysis of quaternary ammonium bromides and iodides in a divided cell with a Nafion membrane yields quaternary polyhalogenides at a carbon anode in water-ethanolic anolytes. The electrodialysis of tetrabutylammonium iodide in a cell with a Nafion membrane enables generation of tetrabutylammonium hydroxide. In electrolytic reduction of nitrobenzene in presence of 1,3-dibromopropane, N-phenylisooxazolidine results in an approx. 60% yield. This electrosynthesis takes place in dimethylformamide with tetrabutylammonium bromide at a glassy-carbon cathode in a divided cell. In the electroreduction of lobelanine hydrogensulfate in a divided cell in acid water-ethanolic media at a lead cathode prevalently lobelanidine has been obtained.


2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Ali Mehdinia ◽  
Minodokht Dejaloud ◽  
Ali Jabbari

AbstractAn approach for improving the power generation of a dual-chamber microbial fuel cell by using a nanostructured polyaniline (PANI)-modified glassy carbon anode was investigated. Modification of the glassy carbon anode was achieved by the electrochemical polymerisation of aniline in 1 M H2SO4 solution. The MFC reactor showed power densities of 0.082 mW cm−2 and 0.031 mW cm−2 for the nano- and microstructured PANI anode, respectively. The results from electron microscopy scanning confirmed formation of the nanostructured PANI film on the anode surface and the results from electrochemical experiments confirmed that the electrochemical activity of the anode was significantly enhanced after modification by nanostructured PANI. Electrochemical impedance spectroscopic results proved that the charge transfer would be facilitated after anode modification with nanostructured PANI.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1517-1524 ◽  
Author(s):  
Jaromír Hlavatý ◽  
Martin Štícha

But-2-yne-1,4-diol (1) was electrochemically oxidized on glassy carbon anode in a dry THF solution containing a quaternary ammonium salt, in an undivided cell giving di(1,3-dioxepan-2-yl)ethyne (5) in 80% yield. The electrochemically generated dialdehyde intermediate is assumedly acetalized in a fast reaction with THF. Dimerized product 6 was isolated in 85% yield after electrooxidation of diol 1 in dry 1,2-dimethoxyethane under similar conditions.


Author(s):  
David A. Muller

The sp2 rich amorphous carbons have a wide variety of microstructures ranging from flat sheetlike structures such as glassy carbon to highly curved materials having similar local ordering to the fullerenes. These differences are most apparent in the region of the graphite (0002) reflection of the energy filtered diffracted intensity obtained from these materials (Fig. 1). All these materials consist mainly of threefold coordinated atoms. This accounts for their similar appearance above 0.8 Å-1. The fullerene curves (b,c) show a string of peaks at distance scales corresponding to the packing of the large spherical and oblate molecules. The beam damaged C60 (c) shows an evolution to the sp2 amorphous carbons as the spherical structure is destroyed although the (220) reflection in fee fcc at 0.2 Å-1 does not disappear completely. This 0.2 Å-1 peak is present in the 1960 data of Kakinoki et. al. who grew films in a carbon arc under conditions similar to those needed to form fullerene rich soots.


1972 ◽  
Vol 106 (3) ◽  
pp. 413-414 ◽  
Author(s):  
M. M. Brubaker
Keyword(s):  

2020 ◽  
Vol 65 (1) ◽  
pp. 28-41
Author(s):  
Marwa Aly Ahmed ◽  
Júlia Erdőssy ◽  
Viola Horváth

Multifunctional nanoparticles have been shown earlier to bind certain proteins with high affinity and the binding affinity could be enhanced by molecular imprinting of the target protein. In this work different initiator systems were used and compared during the synthesis of poly (N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) nanoparticles with respect to their future applicability in molecular imprinting of lysozyme. The decomposition of ammonium persulfate initiator was initiated either thermally at 60 °C or by using redox activators, namely tetramethylethylenediamine or sodium bisulfite at low temperatures. Morphology differences in the resulting nanoparticles have been revealed using scanning electron microscopy and dynamic light scattering. During polymerization the conversion of each monomer was followed in time. Striking differences were demonstrated in the incorporation rate of acrylic acid between the tetramethylethylenediamine catalyzed initiation and the other systems. This led to a completely different nanoparticle microstructure the consequence of which was the distinctly lower lysozyme binding affinity. On the contrary, the use of sodium bisulfite activation resulted in similar nanoparticle structural homogeneity and protein binding affinity as the thermal initiation.


Sign in / Sign up

Export Citation Format

Share Document