pani film
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 26)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 2114 (1) ◽  
pp. 012047
Author(s):  
Maryam M. Hassen ◽  
Isam MJbrahim

Abstract In this paper nanocomposites materials of Polyaniline (PAni) nano-fiber (NFs) and Cerium oxide (CeO2) nanoparticles (NPs) were prepared by two method; hydrothermal and chemical method respectively. The spin coating method was used to prepare PAni and Pani/CeO2 on Si and glass substrates and then screened with XRD, FE-SEM, UV-Vis and as-prepared thin-film photodetectors. The X-ray diffraction pattern of all the prepared films showed the presence of crystalline nature. It was found that the PAni/CeO2 films have a cubic crystal structure.. FESEM results proved that the PAni film prepared have nanofiber like structure, while the PAni/CeO2 films proved that CeO2 NPs fully caped with PAni nanofiber. The UV-Vis spectra showed peaks of PAni 340nm, 651nm and PAni/CeO2 320nm, 620 nm and in the energy gap it is noticed that the band gap value decreases as the CeO2 ratios increases where the maximum values of energy gap of B-band and Q-band (1.65 – 2.74) eV. The maximum sensitivity values of the photoconductive detectors were observed at PAni/CeO2 (2 vol.%) nanoparticles deposited on n-Si substrate which were approximately (2696.5%, 946.15%, 1402.2%, 1613.9%3837.9%, and 2700%) for wavelengths 360, 465, 510, 595,660 and 965 nm respectively.


2021 ◽  
Vol 12 (4) ◽  
pp. 5523-5533

Polyaniline (PANI) slim film was set up by electrochemical polymerization strategy at room temperature in a standard three-electrode cell from (0.1M) aniline monomer and (0,5M) from Sulfuric acid in the presence of distilled water. The development of PANI film was portrayed by Voltammetric studies, SEM, XRD, and FTIR. Voltammetric studies were performed in 0.5 M acidic aqueous solutions using H2SO4. The XRD design demonstrated that the diffraction top at 2θ = (30˚). The FTIR spectroscopy spectra give particular and unmistakable bonds at 3500, 1572.52, 1302.53, 831.98, and 592.85 cm-1.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3425
Author(s):  
Pei-Yi Wong ◽  
Akiyoshi Takeno ◽  
Shinya Takahashi ◽  
Sook-Wai Phang ◽  
Azizah Baharum

The biodegradability problem of polymer waste is one of the fatal pollutFions to the environment. Enzymes play an essential role in increasing the biodegradability of polymers. In a previous study, antistatic polymer film based on poly(lactic acid) (PLA) as a matrix and polyaniline (PAni) as a conductive filler, was prepared. To solve the problem of polymer wastes pollution, a crazing technique was applied to the prepared polymer film (PLA/PAni) to enhance the action of enzymes in the biodegradation of polymer. This research studied the biodegradation test based on crazed and non-crazed PLA/PAni films by enzymes. The presence of crazes in PLA/PAni film was evaluated using an optical microscope and scanning electron microscopy (SEM). The optical microscope displayed the crazed in the lamellae form, while the SEM image revealed microcracks in the fibrils form. Meanwhile, the tensile strength of the crazed PLA/PAni film was recorded as 19.25 MPa, which is almost comparable to the original PLA/PAni film with a tensile strength of 20.02 MPa. However, the Young modulus decreased progressively from 1113 MPa for PLA/PAni to 651 MPa for crazed PLA/PAni film, while the tensile strain increased 150% after crazing. The significant decrement in the Young modulus and increment in the tensile strain was due to the craze propagation. The entanglement was reduced and the chain mobility along the polymer chain increased, thus leading to lower resistance to deformation of the polymer chain and becoming more flexible. The presence of crazes in PLA/PAni film showed a substantial change in weight loss with increasing the time of degradation. The weight loss of crazed PLA/PAni film increased to 42%, higher than that of non-crazed PLA/PAni film with only 31%. The nucleation of crazes increases the fragmentation and depolymerization of PLA/PAni film that induced microbial attack and led to higher weight loss. In conclusion, the presence of crazes in PLA/PAni film significantly improved enzymes’ action, speeding up the polymer film’s biodegradability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2315
Author(s):  
Jae-Young Kim ◽  
Hyo-Jun Jang ◽  
Eunyoung Jung ◽  
Gyutae Bae ◽  
Soonwon Lee ◽  
...  

The morphological and chemical properties of polyaniline (PANI) nanocomposite films after adding small amounts of auxiliary gases such as argon, nitrogen, and oxygen during atmospheric pressure (AP) plasma polymerization are investigated in detail. A separate gas-supply line for applying an auxiliary gas is added to the AP plasma polymerization system to avoid plasma instability due to the addition of auxiliary gas during polymerization. A small amount of neutral gas species in the plasma medium can reduce the reactivity of monomers hyperactivated by high plasma energy and prevent excessive crosslinking, thereby obtaining a uniform and regular PANI nanocomposite film. The addition of small amounts of argon or nitrogen during polymerization significantly improves the uniformity and regularity of PANI nanocomposite films, whereas the addition of oxygen weakens them. In particular, the PANI film synthesized by adding a small amount of nitrogen has the best initial electrical resistance and resistance changing behavior with time after the ex situ iodine (I2)-doping process compared with other auxiliary gases. In addition, it is experimentally demonstrated that the electrical conductivity of the ex situ I2-doped PANI film can be preserved for a long time by isolating it from the atmosphere.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4218
Author(s):  
Iulia Antohe ◽  
Luiza-Izabela Jinga ◽  
Vlad-Andrei Antohe ◽  
Gabriel Socol

In this work, we report results on the fabrication and characterization of a surface plasmon resonance (SPR) pH sensor using platinum (Pt) and polyaniline (PANI) layers successively coated over an unclad core of an optical fiber (FO). The plasmonic thin Pt layer was deposited using a magnetron sputtering technique, while the pH-sensitive PANI layer was synthesized using an electroless polymerization method. Moreover, the formation of PANI film was confirmed by X-ray photoelectron spectroscopy (XPS) technique and its surface morphology was investigated using scanning electron microscopy (SEM). It was found that the PANI/Pt-coated FO-SPR pH sensor exhibits a fast and linear response in either acid or alkali solutions (pH operational range: 1 to 14). The proposed FO-SPR sensor could be used for biomedical applications, environmental monitoring or any remote, real-time on-site measurements.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3710
Author(s):  
Wei Li ◽  
Yuanzhou Liu ◽  
Shuang Zheng ◽  
Guobin Hu ◽  
Kaiyou Zhang ◽  
...  

In this work, we designed and successfully synthesized an interconnected carbon nanosheet/MoS2/polyaniline hybrid (ICN/MoS2/PANI) by combining the hydrothermal method and in situ chemical oxidative polymerization. The as-synthesized ICNs/MoS2/PANI hybrid showed a “caramel treat-like” architecture in which the sisal fiber derived ICNs were used as hosts to grow “follower-like” MoS2 nanostructures, and the PANI film was controllably grown on the surface of ICNs and MoS2. As a LIBs anode material, the ICN/MoS2/PANI electrode possesses excellent cycling performance, superior rate capability, and high reversible capacity. The reversible capacity retains 583 mA h/g after 400 cycles at a high current density of 2 A/g. The standout electrochemical performance of the ICN/MoS2/PANI electrode can be attributed to the synergistic effects of ICNs, MoS2 nanostructures, and PANI. The ICN framework can buffer the volume change of MoS2, facilitate electron transfer, and supply more lithium inset sites. The MoS2 nanostructures provide superior rate capability and reversible capacity, and the PANI coating can further buffer the volume change and facilitate electron transfer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rishabh Anand Omar ◽  
Nishith Verma ◽  
Pankaj Kumar Arora

Early secreted antigenic target of 6 kDa (ESAT-6) has recently been identified as a biomarker for the rapid diagnosis of tuberculosis. We propose a stable and reusable immunosensor for the early diagnosis of tuberculosis based on the detection and quantification of ESAT-6 via cyclic voltammetry (CV). The immunosensor was synthesized by polymerizing aniline dispersed with the reduced graphene oxide (rGO) and Ni nanoparticles, followed by surface modification of the electroconductive polyaniline (PANI) film with anti-ESAT-6 antibody. Physicochemical characterization of the prepared materials was performed by several analytical techniques, including FE-SEM, EDX, XRD, FT-IR, Raman, TGA, TPR, and BET surface area analysis. The antibody-modified Ni-rGO-PANI electrode exhibited an approximately linear response (R2 = 0.988) towards ESAT-6 during CV measurements over the potential range of -1 to +1 V. The lower detection limit for ESAT-6 was approximately 1.0 ng mL-1. The novelty of this study includes the development of the reusable Ni-rGO-PANI-based electrochemical immunosensor for the early diagnosis of tuberculosis. Furthermore, this study successfully demonstrates that electro-conductive PANI may be used as a polymeric substrate for Ni nanoparticles and rGO.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1518
Author(s):  
Minsu Kim ◽  
Dabin Park ◽  
Jooheon Kim

Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and water evaporation-induced self-assembly methods, respectively. The successful syntheses and morphologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials have low electrical conductivity which limits application to the thermoelectric generator. To improve the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power factor of 181.61 μW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ΔT = 30 K. This study demonstrates that the combination of inorganic thermoelectric materials and flexible polymers can generate power in wearable or portable devices.


2021 ◽  
Author(s):  
Xiaojuan Shen ◽  
Xuan Zhang ◽  
Tongfei Wang ◽  
Songjun Li

Abstract In this article, a novel silicon-based electrode was designed with the facile solution methods. With the modification of highly conductive PEDOT:PSS layer on the SiNWs by the spin-coated method (SiNWs-PSS), three-dimensional (3D) porous network polyaniline nanofibers (PANI) film was uniformly electrodeposited on the silicon surface (SiNWs-PSS@PANI). The sheet resistances of the PEDOT:PSS layer with different surfactants as well as the deposition time of the PANI were investigated. After optimization, the fabricated SiNWs-PSS@PANI electrode displayed high capacitance about 301.71 mF cm-2 at the current density of 1mA cm-2, which enhanced ~29 fold comparing to 10.18 mF cm-2 of electrode without the PEDOT:PSS layer between the SiNWs and PANI (SiNWs@PANI), outperforming most values of the reported silicon-based electrodes. The electrode designed in this paper provides a new idea to fabricate high-performance of silicon-based micro-supercapacitors with the simple and low-temperature method.


2021 ◽  
Vol 1028 ◽  
pp. 117-126
Author(s):  
M. Tommy Hasan Abadi ◽  
Nurma Ari Sofa ◽  
Siti Zulaikah ◽  
Nandang Mufti

A heterostructure system based on zinc oxide (ZnO), Gold (Au), and polyaniline polymer (PANI) nanoparticles has been developed to provide an efficient and effective photoelectrochemical energy conversion system. The ZnO/Au/PANI heterostructure system promotes Au as a mediator for electron transfer from the PANI conduction band to the ZnO valence band. A state of electrons being excited has resulted in the photons' charge transfer, which accumulated in ZnO and the holes concentrated in PANI. In this study, we investigated the effect of the deposition time of Au on ZnO/Au/PANI film on photoelectrochemical (PEC) performance. ZnO/Au/PANI films were prepared using spin-coating and DC-Sputtering methods for Au deposition. We found that the effect deposition time of Au in the ZnO/Au/PANI film heterostructural system shows good reduction-oxidation and photocatalytic activity due to the vibration of O-H bond groups in the film.


Sign in / Sign up

Export Citation Format

Share Document