Synthesis and Inhibitory Activity Against COX-2 Catalyzed Prostaglandin Production of Chrysin Derivatives.

ChemInform ◽  
2004 ◽  
Vol 35 (26) ◽  
Author(s):  
Tran Thanh Dao ◽  
Yeon Sook Chi ◽  
Jeongsoo Kim ◽  
Hyun Pyo Kim ◽  
Sanghee Kim ◽  
...  
2004 ◽  
Vol 14 (5) ◽  
pp. 1165-1167 ◽  
Author(s):  
Tran Thanh Dao ◽  
Yeon Sook Chi ◽  
Jeongsoo Kim ◽  
Hyun Pyo Kim ◽  
Sanghee Kim ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Shabnam Farzaneh ◽  
Elnaz Zeinalzadeh ◽  
Bahram Daraei ◽  
Soraya Shahhosseini ◽  
Afshin Zarghi

Background: Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Objective: Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Methods: Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. Results: In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). Conclusion: A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents.


2005 ◽  
Vol 40 (10) ◽  
pp. 977-990 ◽  
Author(s):  
Sunil K. Singh ◽  
V. Saibaba ◽  
K. Srinivasa Rao ◽  
P. Ganapati Reddy ◽  
Pankaj R. Daga ◽  
...  

Fitoterapia ◽  
2020 ◽  
Vol 141 ◽  
pp. 104470 ◽  
Author(s):  
Jian-Long Zhang ◽  
Feng-Feng Zhou ◽  
You-Zhi Li ◽  
Tao Feng ◽  
Lin-Lin Jiang ◽  
...  

Author(s):  
Krishna Chaithanya K. ◽  
Gopalakrishnan V. K. ◽  
Zenebe Hagos ◽  
Govinda Rao D.

Objective: The main objective of the present study was to evaluate the anti-inflammatory activity of isolated bioactive flavonoid Mesuaferrin-A from the bark of Mesuaferrea L. by in vitro, in vivo and in silico approach.Methods: To evaluate the effect of isolated bioactive flavonoid Mesuaferrin-A on arachidonic acid metabolizing enzymes (PLA2, COX-2 and 5-LOX) using in vitro methods, followed by carrageenan-induced paw edema model by in vivo and to determine the binding orientation and interactions of Mesuaferrin-A onarachidonic acid metabolizing enzymes (PLA2, COX-2 and 5-LOX) crystal proteins using molecular docking (in silico) studies.Results: Mesuaferrin-A exhibited a dose-dependent significant 5-LOX inhibitory and considerable COX-2 inhibitory activity by in vitro, The inhibitory activities of 5-LOX and COX-2 at 100µg/ml were found to be 78.67%, 81.03% with IC50 values of 45.22µg/ml and 35.74µg/ml respectively. Whereas Mesuaferrin-A showed less PLA2 inhibitory activity. Mesuaferrin-A showed 68.34% inhibitory activity at 400 mg/kg body weight at the late phase of carrageenan-induced paw edema, and In silico studies demonstrated that Mesuaferrin-A strongly binds with 5-LOX and COX-2, these strong binding affinity of Mesuaferrin-A on active site amino acids of 5-LOX and COX-2 may be responsible for inhibition of enzyme activity. Mesuaferrin-A showeda comparable 5-LOX and COX-2 inhibition activity with (positive control).Conclusion: It was concluded that Mesuaferrin-A act as 5-LOX and COX dual inhibitor, from the results it was suggests that Mesuaferrin-A, may be an effective preventive and therapeutic approach for patients with inflammatory-related diseases.


2020 ◽  
Author(s):  
Khaled R. A. Abdellatif ◽  
Eman K. A. Abdelall ◽  
Heba A. H. Elshemy ◽  
El‐Shaymaa El‐Nahass ◽  
Maha M. Abdel‐Fattah ◽  
...  

Fitoterapia ◽  
2020 ◽  
Vol 142 ◽  
pp. 104534 ◽  
Author(s):  
Juan Li ◽  
Yan-Peng Li ◽  
Fu-Ying Qin ◽  
Yong-Ming Yan ◽  
Hao-Xing Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document