ChemInform Abstract: Effect of Ion Doping on the Electrochemical Performances of LiFePO4-Li3V2(PO4)3Composite Cathode Materials

ChemInform ◽  
2014 ◽  
Vol 45 (35) ◽  
pp. no-no
Author(s):  
Chao Jin ◽  
Xudong Zhang ◽  
Wen He ◽  
Yan Wang ◽  
Haiming Li ◽  
...  
RSC Advances ◽  
2014 ◽  
Vol 4 (30) ◽  
pp. 15332-15339 ◽  
Author(s):  
Chao Jin ◽  
Xudong Zhang ◽  
Wen He ◽  
Yan Wang ◽  
Haiming Li ◽  
...  

This review highlights the effect of ion doping on the electrochemical performances of LiFePO4–Li3V2(PO4)3 composite cathode materials.


2012 ◽  
Vol 519 ◽  
pp. 137-141 ◽  
Author(s):  
Lei Zhang ◽  
Tao Yang ◽  
Qian Yang ◽  
Zhao Hui Huang ◽  
Ming Hao Fang ◽  
...  

Ta-doped Li3V2(PO4)3 cathode material coated by carbon was synthesized via a sol-gel method. Effects of Ta5+ doping on the physical structure and electrochemical performances of the Li3V2(PO4)3/C cathode materials were investigated. Compared with the undoped sample, the Ta-doped samples had no excess peaks but the larger particle size and the narrower distribution of the particle size, indicating that Ta5+ entered into the structure of (Li1-5xTax)3V2(PO4)3/C rather than forming any impurities. When x was up to 0.01, the best electrochemical properties of the Ta-doped cathode materials had been displayed at the charge and discharge rate of 0.1C with the voltage of 3.0~4.8V. The analysis of cyclic voltammetry revealed that the polarization of the Li3V2(PO4)3/C cathode materials could be effectively decreased by Ta5+ doping(x=0.01), mainly resulting from the better electronic conductivity.


Author(s):  
Xiao Yu ◽  
Zhiyong Yu ◽  
Jishen Hao ◽  
Hanxing Liu

Electrolyte additive tris(trimethylsilyl) phosphite (TMSPi) was used to promote the electrochemical performances of LiNi[Formula: see text]Co[Formula: see text]Mn[Formula: see text]O2 (NCM523) at elevated voltage (4.5 V) and temperature (55[Formula: see text]C). The NCM523 in 2.0 wt.% TMSPi-added electrolyte exhibited a much higher capacity (166.8 mAh/g) than that in the baseline electrolyte (118.3 mAh/g) after 100 cycles under 4.5 V at 30[Formula: see text]C. Simultaneously, the NCM523 with 2.0 wt.% TMSPi showed superior rate capability compared to that without TMSPi. Besides, after 100 cycles at 55[Formula: see text]C under 4.5 V, the discharge capacity retention reached 87.4% for the cell with 2.0 wt.% TMSPi, however, only 24.4% of initial discharge capacity was left for the cell with the baseline electrolyte. A series of analyses (TEM, XPS and EIS) confirmed that TMSPi-derived solid electrolyte interphase (SEI) stabilized the electrode/electrolyte interface and hindered the increase of interface impedance, resulting in obviously enhanced electrochemical performances of NCM523 cathode materials under elevated voltage and/or temperature.


2020 ◽  
Vol 10 (7) ◽  
pp. 2538
Author(s):  
Jing Wang ◽  
Shichao Zhang

Herein, a series of novel disulfide polymers were synthesized by using the raw materials of diallyl-o-phthalate, tung oil, peanut oil, and styrene. Four kinds of products: Poly (sulfur-diallyl-o-phthalate) copolymer, poly (sulfur-tung oil) copolymer, poly (sulfur-peanut oil) copolymer, and poly (sulfur-styrene-peanut oil) terpolymer were characterized, and their solubility was studied and compared. Among the four kinds of disulfide polymers, poly (sulfur-styrene-peanut oil) terpolymer had the best solubility in an organic solvent, and it was chosen to be the active cathode material in Li-S battery. Subsequently, two different conductive additives—conductive carbon black and graphene were separately blended with this terpolymer to prepare two battery systems. The electrochemical performances of the two batteries were compared and analyzed. The result showed that the initial specific capacity of poly (sulfur-styrene-peanut oil) terpolymer (blended with conductive carbon black) battery was 935.88 mAh/g, with the capacity retention rate about 43.5%. Comparingly, the initial specific capacity of poly (sulfur-styrene-peanut oil) terpolymer (blended with graphene) battery was 1008.35 mAh/g, with the capacity retention rate around 60.59%. Therefore, the battery system of poly (sulfur-styrene-peanut oil) terpolymer with graphene showed a more stable cycle performance and better rate performance. This optimized system had a simple and environmental-friendly synthesis procedure, which showed a great application value in constructing cathode materials for the Li-S battery.


2020 ◽  
Vol 12 (29) ◽  
pp. 32698-32711
Author(s):  
Sandipan Maiti ◽  
Hadar Sclar ◽  
Rosy ◽  
Judith Grinblat ◽  
Michael Talianker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document