Synthesis of Human Milk Oligosaccharides by Plasmid-Free Bacterial Strains

2016 ◽  
Vol 88 (9) ◽  
pp. 1242-1242
Author(s):  
F. Baumgärtner ◽  
G. A. Sprenger ◽  
C. Albermann
Glycobiology ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 774-786 ◽  
Author(s):  
Sara Porfirio ◽  
Stephanie Archer-Hartmann ◽  
G Brett Moreau ◽  
Girija Ramakrishnan ◽  
Rashidul Haque ◽  
...  

Abstract Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being >5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva M. Moya-Gonzálvez ◽  
Antonio Rubio-del-Campo ◽  
Jesús Rodríguez-Díaz ◽  
María J. Yebra

AbstractMuch evidence suggests a role for human milk oligosaccharides (HMOs) in establishing the infant microbiota in the large intestine, but the response of particular bacteria to individual HMOs is not well known. Here twelve bacterial strains belonging to the genera Bifidobacterium, Enterococcus, Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Staphylococcus and Streptococcus were isolated from infant faeces and their growth was analyzed in the presence of the major HMOs, 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 2′,3-difucosyllactose (DFL), lacto-N-tetraose (LNT) and lacto-N-neo-tetraose (LNnT), present in human milk. Only the isolated Bifidobacterium strains demonstrated the capability to utilize these HMOs as carbon sources. Bifidobacterium infantis Y538 efficiently consumed all tested HMOs. Contrarily, Bifidobacterium dentium strains Y510 and Y521 just metabolized LNT and LNnT. Both tetra-saccharides are hydrolyzed into galactose and lacto-N-triose (LNTII) by B. dentium. Interestingly, this species consumed only the galactose moiety during growth on LNT or LNnT, and excreted the LNTII moiety. Two β-galactosidases were characterized from B. dentium Y510, Bdg42A showed the highest activity towards LNT, hydrolyzing it into galactose and LNTII, and Bdg2A towards lactose, degrading efficiently also 6′-galactopyranosyl-N-acetylglucosamine, N-acetyl-lactosamine and LNnT. The work presented here supports the hypothesis that HMOs are mainly metabolized by Bifidobacterium species in the infant gut.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lianghui Cheng ◽  
Mensiena B. G. Kiewiet ◽  
Madelon J. Logtenberg ◽  
Andre Groeneveld ◽  
Arjen Nauta ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 739
Author(s):  
Ulvi K. Gürsoy ◽  
Krista Salli ◽  
Eva Söderling ◽  
Mervi Gürsoy ◽  
Johanna Hirvonen ◽  
...  

Human milk oligosaccharides (HMOs), the third largest solid fraction in human milk, can modulate inflammation through Toll-like receptor signaling, but little is known about their immunomodulatory potential in the oral cavity. In this study, we determined whether the HMOs 2’-fucosyllactose (2’-FL) and 3-fucosyllactose (3-FL) regulate human-beta defensin (hBD)-2 and -3, cathelicidin (hCAP18/LL-37), and cytokine responses in human gingival cells using a three-dimensional oral mucosal culture model. The model was incubated with 0.1% or 1% 2’-FL and 3-FL, alone and in combination, for 5 or 24 h, and hBD-2, hBD-3, and hCAP18/LL-37 were analyzed by immunohistochemistry. The expression profiles of interleukin (IL)-1, IL-1RA, IL-8, and monocyte chemoattractant protein (MCP)-1 were determined by LUMINEX immunoassay. The combination of 1% 2’-FL and 1% 3-FL, and 1% 3-FL alone, for 24 h upregulated hBD-2 protein expression significantly (p < 0.001 and p = 0.016, respectively). No changes in the other antimicrobial peptides or proinflammatory cytokines were observed. Thus, 3-FL, alone and in combination with 2´-FL, stimulates oral mucosal secretion of hBD-2, without effecting a proinflammatory response when studied in an oral mucosal culture model.


Author(s):  
Marton Szigeti ◽  
Agnes Meszaros-Matwiejuk ◽  
Dora Molnar-Gabor ◽  
Andras Guttman

AbstractIndustrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2′-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2′- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control. Graphical abstract


Author(s):  
Aristea Binia ◽  
Luca Lavalle ◽  
Cheng Chen ◽  
Sean Austin ◽  
Massimo Agosti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document