Does the contribution of human milk oligosaccharides to the beneficial effects of breast milk allow us to hope for an improvement in infant formulas?

Author(s):  
Jean-Pierre Chouraqui
Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1556 ◽  
Author(s):  
Erik Wejryd ◽  
Magalí Martí ◽  
Giovanna Marchini ◽  
Anna Werme ◽  
Baldvin Jonsson ◽  
...  

Difference in human milk oligosaccharides (HMO) composition in breast milk may be one explanation why some preterm infants develop necrotizing enterocolitis (NEC) despite being fed exclusively with breast milk. The aim of this study was to measure the concentration of 15 dominant HMOs in breast milk during the neonatal period and investigate how their levels correlated to NEC, sepsis, and growth in extremely low birth weight (ELBW; <1000 g) infants who were exclusively fed with breast milk. Milk was collected from 91 mothers to 106 infants at 14 and 28 days and at postmenstrual week 36. The HMOs were analysed with high-performance anion-exchange chromatography with pulsed amperometric detection. The HMOs diversity and the levels of Lacto-N-difucohexaose I were lower in samples from mothers to NEC cases, as compared to non-NEC cases at all sampling time points. Lacto-N-difucohexaose I is only produced by secretor and Lewis positive mothers. There were also significant but inconsistent associations between 3′-sialyllactose and 6′-sialyllactose and culture-proven sepsis and significant, but weak correlations between several HMOs and growth rate. Our results suggest that the variation in HMO composition in breast milk may be an important factor explaining why exclusively breast milk fed ELBW infants develop NEC.


2007 ◽  
Vol 98 (S1) ◽  
pp. S74-S79 ◽  
Author(s):  
Rosa María Espinosa ◽  
Martha Taméz ◽  
Pedro Prieto

Research on human milk oligosaccharides (HMO) began with the characterisation of their chemical structures and is now focused on the elucidation of their biological roles. Previously, biological effects could only be investigated with fractions or structures isolated from breast milk; consequently, clinical observations were limited to comparisons between outcomes from breast-fed infants and their formula-fed counterparts. In some cases, it was inferred that the observed differences were caused by the presence of HMO in breast milk. Presently, analytical techniques allow for the fast analysis of milk samples, thus providing insights on the inherent variability of specimens. In addition, methods for the synthesis of HMO have provided single structures in sufficient quantities to perform clinical studies with oligosaccharide-supplemented formulae. Furthermore, studies have been conducted with non-mammalian oligosaccharides with the purpose of assessing the suitability of these structures to functionally emulate HMO. Taken together, these developments justify summarising current knowledge on HMO to further discussions on efforts to emulate human milk in regard to its oligosaccharide content. The present account summarises published data and intends to provide an historical context and to illustrate the state of the field.


Glycobiology ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 774-786 ◽  
Author(s):  
Sara Porfirio ◽  
Stephanie Archer-Hartmann ◽  
G Brett Moreau ◽  
Girija Ramakrishnan ◽  
Rashidul Haque ◽  
...  

Abstract Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being &gt;5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.


2020 ◽  
Vol 295 (12) ◽  
pp. 4035-4048 ◽  
Author(s):  
Candice Quin ◽  
Sara D. Vicaretti ◽  
Nina A Mohtarudin ◽  
Alexander M. Garner ◽  
Deanna M. Vollman ◽  
...  

Human milk oligosaccharides (HMOs) promote the development of the neonatal intestinal, immune, and nervous systems and has recently received considerable attention. Here we investigated how the maternal diet affects HMO biosynthesis and how any diet-induced HMO alterations influence the infant gut microbiome and immunity. Using capillary electrophoresis and MS-based analyses, we extracted and measured HMOs from breast milk samples and then correlated their levels with results from validated 24-h diet recall surveys and breast milk fatty acids. We found that fruit intake and unsaturated fatty acids in breast milk were positively correlated with an increased absolute abundance of numerous HMOs, including 16 sulfonated HMOs we identified here in humans for the first time. The diet-derived monosaccharide 5-N-glycolyl-neuraminic acid (Neu5Gc) was unambiguously detected in all samples. To gain insights into the potential impact of Neu5Gc on the infant microbiome, we used a constrained ordination approach and identified correlations between Neu5Gc levels and Bacteroides spp. in infant stool. However, Neu5Gc was not associated with marked changes in infant immune markers, in contrast with sulfonated HMOs, whose expression correlated with suppression of two major Th2 cytokines, IL-10 and IL-13. The findings of our work highlight the importance of maternal diet for HMO biosynthesis and provide as yet unexplored targets for future studies investigating interactions between HMOs and the intestinal microbiome and immunity in infants.


2012 ◽  
Vol 108 (10) ◽  
pp. 1839-1846 ◽  
Author(s):  
Evelyn Jantscher-Krenn ◽  
Tineke Lauwaet ◽  
Laura A. Bliss ◽  
Sharon L. Reed ◽  
Frances D. Gillin ◽  
...  

Human milk oligosaccharides (HMO), complex sugars that are highly abundant in breast milk, block viral and bacterial attachment to the infant's intestinal epithelium and lower the risk of infections. We hypothesised that HMO also prevent infections with the protozoan parasiteEntamoeba histolytica,as its major virulence factor is a lectin that facilitates parasite attachment and cytotoxicity and binds galactose (Gal) andN-acetyl-galactosamine. HMO contain Gal, are only minimally digested in the small intestine and reach the colon, the site ofE. histolyticainfection. The objective of the present study was to investigate whether HMO reduceE. histolyticaattachment and cytotoxicity. Ourin vitroresults show that physiological concentrations of isolated, pooled HMO detachE. histolyticaby more than 80 %. In addition, HMO rescueE. histolytica-induced destruction of human intestinal epithelial HT-29 cells in a dose-dependent manner. The cytoprotective effects were structure-specific. Lacto-N-tetraose with its terminal Gal rescued up to 80 % of the HT-29 cells, while HMO with fucose α1–2-linked to the terminal Gal had no effect. Galacto-oligosaccharides (GOS), which also contain terminal Gal and are currently added to infant formula to mimic some of the beneficial effects of HMO, completely abolishedE. histolyticaattachment and cytotoxicity at 8 mg/ml. Although our results need to be confirmedin vivo, they may provide one explanation for why breast-fed infants are at lower risk ofE. histolyticainfections. HMO and GOS are heat tolerant, stable, safe and in the case of GOS, inexpensive, which could make them valuable candidates as alternative preventive and therapeutic anti-amoebic agents.


Children ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 804
Author(s):  
Laura Corona ◽  
Anna Lussu ◽  
Alice Bosco ◽  
Roberta Pintus ◽  
Flaminia Cesare Marincola ◽  
...  

Human milk oligosaccharides (HMOs) are the third most represented component in breast milk. They serve not only as prebiotics but they exert a protective role against some significant neonatal pathologies such as necrotizing enterocolitis. Furthermore, they can program the immune system and consequently reduce allergies and autoimmune diseases’ incidence. HMOs also play a crucial role in brain development and in the gut barrier’s maturation. Moreover, the maternal genetic factors influencing different HMO patterns and their modulation by the interaction and the competition between active enzymes have been widely investigated in the literature, but there are few studies concerning the role of other factors such as maternal health, nutrition, and environmental influence. In this context, metabolomics, one of the newest “omics” sciences that provides a snapshot of the metabolites present in bio-fluids, such as breast milk, could be useful to investigate the HMO content in human milk. The authors performed a review, from 2012 to the beginning of 2021, concerning the application of metabolomics to investigate the HMOs, by using Pubmed, Researchgate and Scopus as source databases. Through this technology, it is possible to know in real-time whether a mother produces a specific oligosaccharide, keeping into consideration that there are other modifiable and unmodifiable factors that influence HMO production from a qualitative and a quantitative point of view. Although further studies are needed to provide clinical substantiation, in the future, thanks to metabolomics, this could be possible by using a dipstick and adding the eventual missing oligosaccharide to the breast milk or formula in order to give the best and the most personalized nutritional regimen for each newborn, adjusting to different necessities.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Chandan Ray ◽  
Joshi A. Kerketta ◽  
Subhash Rao ◽  
Snehal Patel ◽  
Shantanu Dutt ◽  
...  

Breast milk is a complex biological fluid that is rich in nutrients and bioactive agents that support the healthy growth and development of the newborns. Human milk oligosaccharides (HMOs) are unconjugated glycans that constitute an important component of the protection conferred by breast milk on the neonate. HMOs may act locally on the neonatal intestine by acting as signalling molecules and directly interacting with the host cells. Although fucosylated and sialylated HMOs have little nutritional value, they exert important prebiotic as well as immunomodulatory effects on the infant gut. However, there is heterogeneity in the quantity and quality of HMOs in breast milk produced by mothers under influence of the genetic and environmental factors. This review encompasses the salient aspects of HMOs such as composition, function, structural diversity, and functional impact on the growth and survival of newborns. In this review, the current knowledge on HMOs is contextualised to discuss the gaps in scientific understanding and the avenues for future research.


Sign in / Sign up

Export Citation Format

Share Document