Sewage sludge ashes as a primary catalyst for the abatement of tar in biomass gasification: Bubbling versus spouted‐fluidized bed configuration

Author(s):  
Giovanna Ruoppolo ◽  
Francesco Miccio ◽  
Michele Miccio ◽  
Paola Brachi ◽  
Riccardo Chirone
J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 266-287
Author(s):  
Zheng Lian ◽  
Yixiao Wang ◽  
Xiyue Zhang ◽  
Abubakar Yusuf ◽  
Lord Famiyeh ◽  
...  

The current hydrogen generation technologies, especially biomass gasification using fluidized bed reactors (FBRs), were rigorously reviewed. There are involute operational parameters in a fluidized bed gasifier that determine the anticipated outcomes for hydrogen production purposes. However, limited reviews are present that link these parametric conditions with the corresponding performances based on experimental data collection. Using the constructed artificial neural networks (ANNs) as the supervised machine learning algorithm for data training, the operational parameters from 52 literature reports were utilized to perform both the qualitative and quantitative assessments of the performance, such as the hydrogen yield (HY), hydrogen content (HC) and carbon conversion efficiency (CCE). Seven types of operational parameters, including the steam-to-biomass ratio (SBR), equivalent ratio (ER), temperature, particle size of the feedstock, residence time, lower heating value (LHV) and carbon content (CC), were closely investigated. Six binary parameters have been identified to be statistically significant to the performance parameters (hydrogen yield (HY)), hydrogen content (HC) and carbon conversion efficiency (CCE)) by analysis of variance (ANOVA). The optimal operational conditions derived from the machine leaning were recommended according to the needs of the outcomes. This review may provide helpful insights for researchers to comprehensively consider the operational conditions in order to achieve high hydrogen production using fluidized bed reactors during biomass gasification.


2021 ◽  
Vol 235 ◽  
pp. 113981
Author(s):  
M. Puig-Gamero ◽  
D.T. Pio ◽  
L.A.C. Tarelho ◽  
P. Sánchez ◽  
L. Sanchez-Silva

2021 ◽  
Vol 11 (2) ◽  
pp. 579
Author(s):  
Max Schmid ◽  
Selina Hafner ◽  
Günter Scheffknecht

The conversion of biogenic residues to fuels and chemicals via gasification and synthesis processes is a promising pathway to replace fossil carbon. In this study, the focus is set on sewage sludge gasification for syngas production. Experiments were carried out in a 20 kW fuel input bubbling fluidized bed facility with steam and oxygen as gasification agent. In-situ produced sewage sludge ash was used as bed material. The sensitivity of the key operation parameters gasifier temperature, oxygen ratio, steam to carbon ratio, and the space velocity on the syngas composition (H2, CO, CO2, CH4, CxHy, H2S, COS, NH3, and tars) was determined. The results show that the produced syngas has high H2 and CO concentrations of up to 0.37 m3 m−3 and 0.18 m3 m−3, respectively, and is thus suitable for synthesis of fuels and chemicals. By adjusting the steam to carbon ratio, the syngas’ H2 to CO ratio can be purposely tailored by the water gas shift reaction for various synthesis products, e.g., synthetic natural gas (H2/CO = 3) or Fischer–Tropsch products (H2/CO = 2). Also, the composition and yields of fly ash and bed ash are presented. Through the gasification process, the cadmium and mercury contents of the bed ash were drastically reduced. The ash is suitable as secondary raw material for phosphorous or phosphate fertilizer production. Overall, a broad database was generated that can be used for process simulation and process design.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2016 ◽  
Vol 152 ◽  
pp. 116-123 ◽  
Author(s):  
L.F. de Diego ◽  
F. García-Labiano ◽  
P. Gayán ◽  
A. Abad ◽  
T. Mendiara ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 3799-3804
Author(s):  
Xiao Xu Fan ◽  
Lei Zhe Chu ◽  
Li Guo Yang

The fuel characteristics of municipal sewage sludge are suitable for dual fluidized bed(DFB) gasification, which can get middle calorific value gas through volatile pyrolysis, and reduce volume through char combustion. The hot test results of municipal sewage sludge on DFB rig were showen that the temperature distribution along combustor heigh is uniform, and the carbon content of fly ash is about 2~3%. In the experiment, with the increase of gasifier temperatrue, the more volatile of the sewage sludge was pyrolyzed. When the temperature of the gasifier reached 800°C, the calorific value of gas was 6.9MJ/Nm3; the emissions of SO2, NOx and HCl were appropriate to the standard. The leaching toxicity of heavy metal of the fly ash was lower than the discharge standard.


2021 ◽  
pp. 131847
Author(s):  
Dali Kong ◽  
Kun Luo ◽  
Shuai Wang ◽  
Jiahui Yu ◽  
Jianren Fan

Author(s):  
D.V. Baratha Dodawatta ◽  
U.D. Indula ◽  
N.A.C.J.D. Senarathna ◽  
D.G.C. Wickramasinghe ◽  
M. Narayana

2021 ◽  
Author(s):  
Ibtihaj Khurram Faridi ◽  
Evangelos Tsotsas ◽  
Wolfram Heineken ◽  
Marcus Koegler ◽  
Abdolreza Kharaghani

Sign in / Sign up

Export Citation Format

Share Document