Mass transfer between solid particles and liquid in a three phase fluidized bed

1987 ◽  
Vol 65 (2) ◽  
pp. 228-236 ◽  
Author(s):  
A. Prakash ◽  
C. L. Briens ◽  
M. A. Bergougnou
2013 ◽  
Vol 8 (1) ◽  
pp. 9-15

Biological treatment has been carried out in two different systems: aerated closed and threephase fluidized bed reactors for hydrocarbons removal from refinery wastewaters. For the two systems, hydrodynamic study allowed the determination of operating conditions before treatment experiments. Then, in a second time, biological treatments have been conducted in the same operating conditions. The obtained results showed that in the three-phase fluidized bed we can degrade hydrocarbons more rapidly than in a closed aerated bioreactor. Among the different appropriate techniques available to create efficient contacts between phases, the three-phase fluidization G/L/S where carrier particles are moving inside the reactor seems very interesting. It allows an intimate contact between phases and present many advantages concerning hydrodynamic and mass transfer phenomena. In fact, depending on operating conditions and the bubble flow behaviour, the three-phase fluidized bed could display different flow regimes In these systems called bioreactors the solid particles covered with a biofilm are fluidized by two ascending flows of air and contaminated water. With favourable operating conditions, from a hydrodynamic and mass transfer point of view, the pollutant can be biologically degraded up to 90%. Until this date, the three-phase bioreactors modelling remains very complex because it required taking into account several factors: the pollutant biodegradation rate in the biofilm, the bioreactor hydrodynamic characteristics, and the reactant interfacial gas-liquid and liquidsolid mass transfer. Thus the essential purpose of modelling is to integrate the microbial kinetics with the reactor hydrodynamics. We can notice that a few models have incorporated both bioreactor hydrodynamics and microbial kinetics. For the steady state bioreactor model, we generally assume that the particles are uniform in size, the biofilm is uniform in thickness, and the biofilm can be considered as homogeneous matrix through which oxygen and substrate diffuse and are consumed by the microbes. The liquid phase in the bioreactor substrate is considered to be axially dispersed while the gas phase is assumed to be in plug flow [2]. Rittmann (1997) proposed a model based on wake theory for predicting bed expansion and phase hold-ups for three-phase fluidized bed bioreactors. In this model he modified the correlation for the computation of the bioparticles drag coefficient CD [3]. He also attempted to explain the biofilm detachment which can occur with three broad patterns: erosion, sloughing and scouring and assumed that the factors affecting detachment rates can be grouped into two categories (physical forces and microorganisms physiology in the biofilm).


2005 ◽  
Vol 9 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Christo Boyadjiev

A model for transfer processes in column apparatuses has been done. The model may be modified for different apparatuses as columns with (or without) packet bed, two (or three) phase airlift reactors and fluidized bed reactors. The mass transfer is result of different volume reactions as a chemical, photochemical, biochemical or catalytic, reactions, or interphase. mass transfer. The using of the average velocities and concentration permit to solve the scale-up problems. A hierarchical approach for model parameter identification has been proposed.


2014 ◽  
Vol 95 (1) ◽  
pp. 49-56 ◽  
Author(s):  
B. S. Subramanyam ◽  
M. S. N. Murty ◽  
B. S. Babu ◽  
K. V. Ramesh

Enhancement of mass transfer coefficient is highly desirable for economic design of process equipment. The present study is essentially carried out to know the effect of flow variables such as gas and liquid velocities and geometric parameters of the internal on mass transfer coefficients in a three phase fluidized bed. The mass transfer coefficient data were obtained using a string of cones internal in a three-phase fluidized bed electrochemical reactor. The flow system investigated was nitrogen, a fluid electrolyte and spherical glass beads as gas, liquid and solid phases respectively. Limiting current technique was employed to obtain mass transfer data. The internal comprises of a string of cones arranged concentrically on a central rod which is placed coaxially in a three phase fluidized bed. The presence of internal in three phase fluidized beds augmented the mass transfer coefficient significantly. In the present investigation it was found that the effect of gas velocity, liquid velocity, rod diameter and cone diameter was only marginal. However, the influence of pitch, half apex angle of cone and particle diameter was found to be significant. Correlations were developed based on least squares regression analysis for the prediction of mass transfer coefficient in terms of pertinent variables


2016 ◽  
Vol 14 (1) ◽  
pp. 93-103 ◽  
Author(s):  
R. A. Bortolozzi ◽  
M. G. Chiovetta

AbstractA mathematical model of a bubbling fluidized-bed reactor for the production of polyolefins is presented. The model is employed to simulate a typical, commercial-scale reactor where the synthesis of polyethylene using supported catalysts is carried out. Results are used to follow the evolution of temperature within the reactor bed to avoid conditions producing polymer degradation. The fluidized bed is modeled as a heterogeneous system with a bubble gas phase and a solid-particle emulsion. The catalyst active sites are considered located within a growing, solid, ever changing particle composed of the support, the catalyst and the polymer being produced. The model sees the reactor as a three phase complex: (a) the bubble phase, transporting most of the gas entering the reactor; (b) the solid-particle phase, where polymerization takes place; and (c) the interstitial-gas phase among solid particles. Both gaseous phases move continuously upward, with different velocities, and are modeled as plug flows. For the solid-particle phase, modeling alternatives are explored, ranging from a descending plug-flow limiting case to the opposite extreme of a perfectly mixed tank related to the particle drag-effect the rising bubble produces in the bed. In the scouting process between these limits instabilities are predicted by the model. The most realistic representation of the bed is that of the two gas phases moving upward in two plug-flow patterns and the solids moving with ascending and descending trajectories due to back-mixing.


Sign in / Sign up

Export Citation Format

Share Document