scholarly journals Electro Winning from Dilute Solutions at Enhanced Rates using Three-Phase Flow Reactor

Enhancement of mass transfer coefficient is highly desirable for economic design of process equipment. The present study is essentially carried out to know the effect of flow variables such as gas and liquid velocities and geometric parameters of the internal on mass transfer coefficients in a three phase fluidized bed. The mass transfer coefficient data were obtained using a string of cones internal in a three-phase fluidized bed electrochemical reactor. The flow system investigated was nitrogen, a fluid electrolyte and spherical glass beads as gas, liquid and solid phases respectively. Limiting current technique was employed to obtain mass transfer data. The internal comprises of a string of cones arranged concentrically on a central rod which is placed coaxially in a three phase fluidized bed. The presence of internal in three phase fluidized beds augmented the mass transfer coefficient significantly. In the present investigation it was found that the effect of gas velocity, liquid velocity, rod diameter and cone diameter was only marginal. However, the influence of pitch, half apex angle of cone and particle diameter was found to be significant. Correlations were developed based on least squares regression analysis for the prediction of mass transfer coefficient in terms of pertinent variables

2019 ◽  
Vol 8 (3) ◽  
pp. 5763-5766

Nanomaterial has unique physical property which made it important for many applications and that is why the use of nanomaterials rapidly increasing in the field of science and engineering.1 . This work focuses on mass transfer of solids into liquid in three phase fluidized beds in presence of nanomaterial. This include the study of effect of gas velocity, time and different concentration of nanomaterials on mass transfer coefficient in stagnant liquid column in three phase fluidized bed system. To measure coefficient of the mass transfer, known quantity of solid pellets ie benzoic acid and known amount of nanomaterial fraction ie Arachitol nano were charged in the test column of three phase fluidized bed system. At the beginning of each run, test section was partially filled with water which prevent breakage of particles. The experiments were conducted by sequentially varying gas velocity for different volumes of nanomaterial and measuring the rate of mass transfer by collecting samples directly from the outlet ports at the top subsequently analysed by volumetric titration method. The results show enhancement in mass transfer coefficient by addition of nanomaterials. Arachitol nano has been taken in different volumes ie 3ml, 7ml, 10ml and 20ml in (GLS) gas ,liquid and solid fluidized bed with air, water and benzoic acid pellets as three phases respectively in the system. The presence of nanomaterial increases the solid liquid mass transfer coefficient value with increasing fraction of nanomaterial, increasing gas velocity and increasing time although experimental run has been taken only for one hour.


2003 ◽  
Vol 57 (7-8) ◽  
pp. 330-334
Author(s):  
Srdjan Pejanovic ◽  
Radmila Garic-Grulovic ◽  
Predrag Bozalo

The absorption of carbon dioxide in aqueous diethanolamine solutions was carried out in a three-phase fluidized bed with inert spherical packing. The rate of absorption was calculated on the basis of measuring the concentration change in the liquid phase on-line by a conductivity probe. It was shown that the Danckwerts plot method might be successfully used to simultaneously determine the effective interfacial area and both the gas and liquid-side mass transfer coefficients. While the gas-side mass transfer coefficient is independent of the liquid flow rate, the effective interfacial area and liquid-side mass transfer coefficient increase with increasing liquid flow rate.


2008 ◽  
Vol 141 (1-3) ◽  
pp. 278-283 ◽  
Author(s):  
Lishun Hu ◽  
Xinjun Wang ◽  
Guangsuo Yu ◽  
Fuchen Wang ◽  
Zunhong Yu

1994 ◽  
Vol 11 (2) ◽  
pp. 73-81 ◽  
Author(s):  
Mamdouh M. Nassar ◽  
Mohammed S. El-Geundi

The influence of agitation, particle diameter and mass of adsorbent on the external mass-transfer coefficient is discussed. The computed values correlate with the dimensionless function Sh/Sc1/3. It has been found that Sh/Sc1/3 varies linearly with the variables studied and may be correlated with system variables via the equation Sh/Sc1/3 = A(variable)B.


Sign in / Sign up

Export Citation Format

Share Document