A Configurationally Tunable Perylene Bisimide Derivative‐based Fluorescent Film Sensor for the Reliable Detection of Volatile Basic Nitrogen towards Fish Freshness Evaluation

Author(s):  
Qingwei Jiang ◽  
Zhaolong Wang ◽  
Gang Wang ◽  
Ke Liu ◽  
Wenjun Xu ◽  
...  
Author(s):  
Simin Lin ◽  
Xingmao Chang ◽  
Zhaolong Wang ◽  
Jing Zhang ◽  
Nannan Ding ◽  
...  

2020 ◽  
Vol 2020 (4) ◽  
pp. 76-1-76-7
Author(s):  
Swaroop Shankar Prasad ◽  
Ofer Hadar ◽  
Ilia Polian

Image steganography can have legitimate uses, for example, augmenting an image with a watermark for copyright reasons, but can also be utilized for malicious purposes. We investigate the detection of malicious steganography using neural networkbased classification when images are transmitted through a noisy channel. Noise makes detection harder because the classifier must not only detect perturbations in the image but also decide whether they are due to the malicious steganographic modifications or due to natural noise. Our results show that reliable detection is possible even for state-of-the-art steganographic algorithms that insert stego bits not affecting an image’s visual quality. The detection accuracy is high (above 85%) if the payload, or the amount of the steganographic content in an image, exceeds a certain threshold. At the same time, noise critically affects the steganographic information being transmitted, both through desynchronization (destruction of information which bits of the image contain steganographic information) and by flipping these bits themselves. This will force the adversary to use a redundant encoding with a substantial number of error-correction bits for reliable transmission, making detection feasible even for small payloads.


Author(s):  
Aleksandr S. MYAKOCHIN ◽  
Petr V. NIKITIN ◽  
Sergey Yu. POBEREZHSKIY ◽  
Anna A. SHKURATENKO

The paper presents a method, tools and a newly developed algorithm for experimentally determining heat transfer coefficients in organic liquids and solutions. This work is made relevant by the problem of development of a new generation of aerospace technology. In this connection, improvements have been made to the pulse method of determining heat transfer coefficients that is based on the use of a micron-thick film sensor. The measurement setup was modified. A math model was constructed for the measuring sensor. Algorithms were developed for conducting the experiment and processing measurement results to determine heat transfer coefficients. Experimental uncertainties were analyzed. The paper provides results of experimental studies on certain organic liquids. The authors believe that the material presented in the paper will find application in research conducted at research institutions, engineering offices and universities, among researches, postgraduates and students. Key words: thermal and physical characteristics, organic liquids and their solutions, film-type electrical resistor, thin-film temperature sensor, voltage pulse, resistance thermometer, irregular heat transfer regime.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 593
Author(s):  
Ryota Yanagisawa ◽  
Shunsuke Shigaki ◽  
Kotaro Yasui ◽  
Dai Owaki ◽  
Yasuhiro Sugimoto ◽  
...  

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


Author(s):  
Guanghui Ouyang ◽  
David Bialas ◽  
Frank Würthner

Correction for ‘Reversible fluorescence modulation through the photoisomerization of an azobenzene-bridged perylene bisimide cyclophane’ by Guanghui Ouyang et al., Org. Chem. Front., 2021, DOI: 10.1039/D0QO01635G.


Sign in / Sign up

Export Citation Format

Share Document