Substrate-Induced Stable Enzyme-Inhibitor Complex Formation Allows Tight Binding of Novel 2-Aminopyrimidin-4(3H)-ones to Drug-Resistant HIV-1 Reverse Transcriptase Mutants

ChemMedChem ◽  
2008 ◽  
Vol 3 (9) ◽  
pp. 1412-1418 ◽  
Author(s):  
Alberta Samuele ◽  
Marcella Facchini ◽  
Dante Rotili ◽  
Antonello Mai ◽  
Marino Artico ◽  
...  

ChemMedChem ◽  
2007 ◽  
Vol 2 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Reynel Cancio ◽  
Antonello Mai ◽  
Dante Rotili ◽  
Marino Artico ◽  
Gianluca Sbardella ◽  
...  


2009 ◽  
Vol 81 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Alberta Samuele ◽  
Alexandra Kataropoulou ◽  
Marco Viola ◽  
Samantha Zanoli ◽  
Giuseppe La Regina ◽  
...  


2011 ◽  
Vol 21 (12) ◽  
pp. 3519-3522 ◽  
Author(s):  
Chandravanu Dash ◽  
Yousef Ahmadibeni ◽  
Michael J. Hanley ◽  
Jui Pandhare ◽  
Mathias Gotte ◽  
...  


2021 ◽  
Vol 13 (1) ◽  
pp. 70-79
Author(s):  
Thierry Ingabire ◽  
A. V. Semenov ◽  
E. V. Esaulenko ◽  
E. B. Zueva ◽  
A. N. Schemelev ◽  
...  

There is concern that the widespread use of antiretroviral drugs (ARV) to treat human immunodeficiency virus 1 (HIV-1) infection may result in the emergence of transmission of drug-resistant virus among persons newly infected with HIV-1. Russia is one of a growing number of countries in the world where drug-resistant HIV is becoming a serious health problem because it has the potential to compromise the efficacy of antiretroviral therapy (ART) at the population level.Materials and methods. We performed a genetic analysis of the HIV-1 plasma derived pol gene among the newly diagnosed ART-naïve HIV-1 infected patients during the period from November 2018 to October 2019 in the St. Petersburg Clinical Infectious Diseases Hospital named after S.P. Botkin. We used reverse transcriptase polymerase chain reaction (RT-PCR) followed by direct sequencing of PCR products to determine the prevalence of primary drug resistance (PDR) conferring mutations. HIV-1 genotypes were determined by phylogenetic analysis.Results. The predominant HIV-1 subtype was A1 (87.2%), followed by B (11.8%) and CRF06_cpx (1%). The overall prevalence of PDR was 11%. Virus with known resistance-conferring mutations to any nucleoside reverse transcriptase inhibitors (NRTIs) was found in 8 individuals, to any non NRTIs in 5 subjects, and to any protease inhibitors in 1 case. Multidrug-resistant virus was identified in 2 individuals (2%).Conclusion. The distribution of HIV-1 genotypes in St. Petersburg, Russia is diverse. The emerging prevalence of PDR in ART-naïve patients demonstrates the significance of constant monitoring due to the challenges it presents towards treatment.



Author(s):  
Mark J. Naccarato ◽  
Deborah M. Yoong ◽  
Ignatius W. Fong ◽  
Kevin A. Gough ◽  
Marian A. Ostrowski ◽  
...  

Background: Patients with drug-resistant HIV often require complex antiretroviral regimens. However, combining fixed-dose combination tablets such as tenofovir–disoproxil–fumarate, emtricitabine, and cobicistat-boosted elvitegravir (TDF/FTC/EVG/cobi) with darunavir (DRV) can provide a simple, once-daily (QD), 2-tablet regimen for patients with drug-resistant HIV. Primary objective was to determine the percentage of patients with HIV-1 RNA <40 copies/mL at 48 weeks. Methods: We performed a retrospective chart review of patients initiated on TDF/FTC/EVG/cobi plus DRV. Results: Among the 21 included patients, prior resistance showed a median of 2 nucleoside reverse transcriptase inhibitor mutations, 1 nonnucleoside reverse transcriptase mutation, and 1 protease inhibitor mutation. At week 48, 14 (67%) patients achieved HIV-1 RNA <40 copies/mL, 1 patient experienced viral rebound, and 6 (29%) had missing data or discontinued therapy. No patient discontinued for adverse events. Conclusion: According to this observational study, QD TDF/FTC/EVG/cobi plus DRV is considered safe, well tolerated, and generally effective in suppressing HIV drug-resistant virus.



Author(s):  
Nawaid Hussain Khan ◽  
Mikashmi Kohli ◽  
Kartik Gupta ◽  
Bimal Kumar Das ◽  
Ravindra Mohan Pandey ◽  
...  

Introduction: The present study aimed to report the prevalent HIV-1 drug-resistant mutations in patients with HIV-1 alone and tuberculosis (TB) coinfection alone to improve our understanding of the mutation patterns and aid treatment decisions. Methods: Patients with HIV-1 and HIV-TB on treatment for more than 1 year with suspected failure were recruited. Sequencing of protease and two-thirds of the region of reverse transcriptase gene was done for drug-resistant mutations. Results: In the HIV-TB group (n = 25), 88%, 92%, and 12% had mutations to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs), respectively. In the HIV-alone group (n = 25), 84%, 100%, and 4% had mutations to NRTIs, NNRTIs, and PIs, respectively. M184V, M41L, D67N, G190A, A98G, and K103N were the most common mutations seen. Conclusion: There is a high prevalence of drug-resistant mutations in HIV and HIV-TB coinfected patients.



2013 ◽  
Vol 94 (7) ◽  
pp. 1597-1607 ◽  
Author(s):  
Jiong Wang ◽  
Dongge Li ◽  
Robert A. Bambara ◽  
Hongmei Yang ◽  
Carrie Dykes

The fitness of non-nucleoside reverse transcriptase inhibitor (NNRTI) drug-resistant reverse transcriptase (RT) mutants of HIV-1 correlates with the amount of RT in the virions and the RNase H activity of the RT. We wanted to understand the mechanism by which secondary NNRTI-resistance mutations, L100I and K101E, and the nucleoside resistance mutation, L74V, alter the fitness of K103N and G190S viruses. We measured the amount of RT in virions and the polymerization and RNase H activities of mutant RTs compared to wild-type, K103N and G190S. We found that L100I, K101E and L74V did not change the polymerization or RNase H activities of K103N or G190S RTs. However, L100I and K101E reduced the amount of RT in the virions and subsequent addition of L74V restored RT levels back to those of G190S or K103N alone. We conclude that fitness changes caused by L100I, K101E and L74V derive from their effects on RT content.



2005 ◽  
Vol 49 (11) ◽  
pp. 4546-4554 ◽  
Author(s):  
Reynel Cancio ◽  
Romano Silvestri ◽  
Rino Ragno ◽  
Marino Artico ◽  
Gabriella De Martino ◽  
...  

ABSTRACT Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation.



2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Paul L. Boyer ◽  
Kevin Melody ◽  
Steven J. Smith ◽  
Linda L. Dunn ◽  
Chris Kline ◽  
...  

ABSTRACTTwo mutations, G112D and M230I, were selected in the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) by a novel nonnucleoside reverse transcriptase inhibitor (NNRTI). G112D is located near the HIV-1 polymerase active site; M230I is located near the hydrophobic region where NNRTIs bind. Thus, M230I could directly interfere with NNRTI binding but G112D could not. Biochemical and virological assays were performed to analyze the effects of these mutations individually and in combination. M230I alone caused a reduction in susceptibility to NNRTIs, while G112D alone did not. The G112D/M230I double mutant was less susceptible to NNRTIs than was M230I alone. In contrast, both mutations affected the ability of RT to incorporate nucleoside analogs. We suggest that the mutations interact with each other via the bound nucleic acid substrate; the nucleic acid forms part of the polymerase active site, which is near G112D. The positioning of the nucleic acid is influenced by its interactions with the “primer grip” region and could be influenced by the M230I mutation.IMPORTANCEAlthough antiretroviral therapy (ART) is highly successful, drug-resistant variants can arise that blunt the efficacy of ART. New inhibitors that are broadly effective against known drug-resistant variants are needed, although such compounds might select for novel resistance mutations that affect the sensitivity of the virus to other compounds. Compound 13 selects for resistance mutations that differ from traditional NNRTI resistance mutations. These mutations cause increased sensitivity to NRTIs, such as AZT.



Sign in / Sign up

Export Citation Format

Share Document