scholarly journals Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input

2016 ◽  
Vol 524 (17) ◽  
pp. 3518-3529 ◽  
Author(s):  
Yun-Ping Deng ◽  
Anton Reiner
eNeuro ◽  
2015 ◽  
Vol 2 (1) ◽  
pp. ENEURO.0008-14.2015 ◽  
Author(s):  
Sandra M. Holley ◽  
Prasad R. Joshi ◽  
Anna Parievsky ◽  
Laurie Galvan ◽  
Jane Y. Chen ◽  
...  

2021 ◽  
Author(s):  
Dalton Surmeier ◽  
Tristano Pancani ◽  
Michelle Day ◽  
Tatiana Tkatch ◽  
David Wokosin ◽  
...  

Abstract Huntington’s disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in the huntingtin gene. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology remain a matter of speculation. To help fill this gap, the zQ175+/- knockin mouse model of HD was studied using approaches that allowed optogenetic interrogation of intratelencephalic (IT) and pyramidal tract (PT) connections with principal striatal spiny projection neurons (SPNs). These studies revealed that the connectivity of IT, but not PT, neurons with direct and indirect pathway SPNs increased in early symptomatic zQ175+/- HD mice. This enhancement was attributable to reduced inhibitory control of IT terminals by striatal cholinergic interneurons (ChIs). Lowering mutant huntingtin selectively in ChIs with a virally-delivered zinc finger repressor protein normalized striatal acetylcholine release and IT functional connectivity – revealing a novel node in the network underlying corticostriatal pathophysiology in HD.


2021 ◽  
Author(s):  
Danielle A. Simmons ◽  
Brian D. Mills ◽  
Robert R. Butler III ◽  
Jason Kuan ◽  
Tyne L. M. McHugh ◽  
...  

AbstractHuntington’s disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.


2015 ◽  
Vol 44 ◽  
pp. 121-127 ◽  
Author(s):  
Kuo-Hsuan Chang ◽  
Yih-Ru Wu ◽  
Yi-Chun Chen ◽  
Chiung-Mei Chen

2006 ◽  
Vol 5 (3) ◽  
pp. 483-492 ◽  
Author(s):  
Tsz M. Tsang ◽  
Ben Woodman ◽  
Gerard A. Mcloughlin ◽  
Julian L. Griffin ◽  
Sarah J. Tabrizi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document