Very Long-Range Effects: Cooperativity between Anion-π and Hydrogen-Bonding Interactions

ChemPhysChem ◽  
2009 ◽  
Vol 10 (13) ◽  
pp. 2256-2264 ◽  
Author(s):  
Xavier Lucas ◽  
Carolina Estarellas ◽  
Daniel Escudero ◽  
Antonio Frontera ◽  
David Quiñonero ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 51456-51469 ◽  
Author(s):  
Mohamed Gamal Mohamed ◽  
Jia-Huei Tu ◽  
Shih-Hung Huang ◽  
Yeo-Wan Chiang ◽  
Shiao-Wei Kuo

Hierarchical lamellae-within-lamellae structure for the PTyr/AzoPy-C16 supramolecular complex, featuring long-range-ordered lamellae arising from the PTyr within lamellae arising from AzoPy-C16 units oriented in a perpendicular manner.


2020 ◽  
Vol 117 (43) ◽  
pp. 26626-26632 ◽  
Author(s):  
Joshua J. Goings ◽  
Pengfei Li ◽  
Qiwen Zhu ◽  
Sharon Hammes-Schiffer

Blue light using flavin (BLUF) photoreceptor proteins are critical for many light-activated biological processes and are promising candidates for optogenetics because of their modular nature and long-range signaling capabilities. Although the photocycle of the Slr1694 BLUF domain has been characterized experimentally, the identity of the light-adapted state following photoexcitation of the bound flavin remains elusive. Herein hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of this photocycle provide a nonequilibrium dynamical picture of a possible mechanism for the formation of the light-adapted state. Photoexcitation of the flavin induces a forward proton-coupled electron transfer (PCET) process that leads to the formation of an imidic acid tautomer of Gln50. The calculations herein show that the subsequent rotation of Gln50 allows a reverse PCET process that retains this tautomeric form. In the resulting purported light-adapted state, the glutamine tautomer forms a hydrogen bond with the flavin carbonyl group. Additional ensemble-averaged QM/MM calculations of the dark-adapted and purported light-adapted states demonstrate that the light-adapted state with the imidic acid glutamine tautomer reproduces the experimentally observed spectroscopic signatures. Specifically, the calculations reproduce the red shifts in the flavin electronic absorption and carbonyl stretch infrared spectra in the light-adapted state. Further hydrogen-bonding analyses suggest the formation of hydrogen-bonding interactions between the flavin and Arg65 in the light-adapted state, providing a plausible explanation for the experimental observation of faster photoinduced PCET in this state. These characteristics of the light-adapted state may also be essential for the long-range signaling capabilities of this photoreceptor protein.


2021 ◽  
Author(s):  
Thufail M. Ismail ◽  
Neetha Mohan ◽  
P. K. Sajith

Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).


RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 39033-39036
Author(s):  
Ayano Awatani ◽  
Masaaki Suzuki

Triply β-dicarbonyl-embedded 1,3,5-triazine derivatives result in formation of circular linkage of resonance-assisted hydrogen bonding interactions, which can be regarded as well-delocalized resonance hybrids.


Soft Matter ◽  
2021 ◽  
Author(s):  
Aliaksei Aliakseyeu ◽  
Victoria Albright ◽  
Danielle Yarbrough ◽  
Samantha Hernandez ◽  
Qing Zhou ◽  
...  

This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid)...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1908
Author(s):  
Hai Li ◽  
Sooman Lim

Self-polarized piezoelectric devices have attracted significant interest owing to their fabrication processes with low energy consumption. Herein, novel poling-free piezoelectric nanogenerators (PENGs) based on self-polarized polyvinylidene difluoride (PVDF) induced by the incorporation of different surface-modified barium titanate nanoparticles (BTO NPs) were prepared via a fully printing process. To reveal the effect of intermolecular interactions between PVDF and NP surface groups, BTO NPs were modified with hydrophilic polydopamine (PDA) and hydrophobic 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) to yield PDA-BTO and PFD-BTO, respectively. This study demonstrates that the stronger hydrogen bonding interactions existed in PFD-BTO/PVDF composite film comparative to the PDA-BTO/PVDF composite film induced the higher β-phase formation (90%), which was evidenced by the XRD, FTIR and DSC results, as well as led to a better dispersion of NPs and improved mechanical properties of composite films. Consequently, PFD-BTO/PVDF-based PENGs without electric poling exhibited a significantly improved output voltage of 5.9 V and power density of 102 μW cm−3, which was 1.8 and 2.9 times higher than that of PDA-BTO/PVDF-based PENGs, respectively. This study provides a promising approach for advancing the search for high-performance, self-polarized PENGs in next-generation electric and electronic industries.


Sign in / Sign up

Export Citation Format

Share Document