scholarly journals Building Blocks for High‐Efficiency Organic Photovoltaics: Interplay of Molecular, Crystal, and Electronic Properties in Post‐Fullerene ITIC Ensembles

ChemPhysChem ◽  
2019 ◽  
Vol 20 (20) ◽  
pp. 2608-2626 ◽  
Author(s):  
Steven M. Swick ◽  
Tim Gebraad ◽  
Leighton Jones ◽  
Bo Fu ◽  
Thomas J. Aldrich ◽  
...  
2020 ◽  
Vol 17 (7) ◽  
pp. 540-547
Author(s):  
Chun-Hui Yang ◽  
Cheng Wu ◽  
Jun-Ming Zhang ◽  
Xiang-Zhang Tao ◽  
Jun Xu ◽  
...  

Background: The sulfinic esters are important and useful building blocks in organic synthesis. Objective: The aim of this study was to develop a simple and efficient method for the synthesis of sulfinic esters. Materials and Methods: Constant current electrolysis from thiols and alcohols was selected as the method for the synthesis of sulfinic esters. Results and Discussion: A novel electrochemical method for the synthesis of sulfinic esters from thiophenols and alcohols has been developed. Up to 27 examples of sulfinic esters have been synthesized using the current methods. This protocol shows good functional group tolerance as well as high efficiency. In addition, this protocol can be easily scaled up with good efficiency. Notably, heterocycle-containing substrates, including pyridine, thiophene, and benzothiazole, gave the desired products in good yields. A plausible reaction mechanism is proposed. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. It is considered that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future.


2021 ◽  
Vol 33 (18) ◽  
pp. 2170142
Author(s):  
Ming Zhang ◽  
Lei Zhu ◽  
Tianyu Hao ◽  
Guanqing Zhou ◽  
Chaoqun Qiu ◽  
...  

2021 ◽  
pp. 2007177
Author(s):  
Ming Zhang ◽  
Lei Zhu ◽  
Tianyu Hao ◽  
Guanqing Zhou ◽  
Chaoqun Qiu ◽  
...  

2022 ◽  
Author(s):  
Hui Jiang ◽  
Jun Ye ◽  
Peng Hu ◽  
Shengli Zhu ◽  
Yanqin Liang ◽  
...  

Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b’]-dithiophene (DTTCNQ) single crystals as a template to...


Solar RRL ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 1800286 ◽  
Author(s):  
Xiao Wang ◽  
Hui Jin ◽  
Ravi C. R. Nagiri ◽  
Beta Z. L. Poliquit ◽  
Jegadesan Subbiah ◽  
...  

2008 ◽  
Vol 07 (01) ◽  
pp. 63-72 ◽  
Author(s):  
YONG XUE ◽  
G. ALI MANSOORI

Diamondoids and their derivatives have found major applications as templates and as molecular building blocks in nanotechnology. An ab initio method we calculated the quantum conductance and the essential electronic properties of two lower diamondoids (adamantane and diamantane) and three of their important derivatives (amantadine, memantine and rimantadine). We also studies two artificial molecules that are built by substituting one hydrogen ion with one sodium ion in both adamantane and diamantane molecules. Most of our results are based on an infinite Au two-probe system constructed by ATK and VNL software, which comprise TRANSTA-C package. By changing various system structures and molecule orientations in linear Au and 2 × 2 Au probe systems, we found that although the conductance of adamantane and diamantane are very small, the derivatives of the lower diamondoids have considerable conductance at specific orientations and also showed interesting electronic properties. The quantum conductance of such molecules will change significantly by changing the orientations of the molecules, which approves that residues like nitrogen and sodium atoms have great effects on the conductance and electronic properties of single molecule. There are obvious peaks near Fermi energy in the transmission spectrums of artificial molecules, indicating the plateaus in I–V characteristics of such molecules.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Fabrizio Giordano ◽  
Antonio Abate ◽  
Juan Pablo Correa Baena ◽  
Michael Saliba ◽  
Taisuke Matsui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document