Noise induced phase transition between maximum entropy production structures and minimum entropy production structures?

Complexity ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 8-11 ◽  
Author(s):  
Alfred Hubler ◽  
Andrey Belkin ◽  
Alexey Bezryadin
2004 ◽  
Vol 50 (170) ◽  
pp. 342-352 ◽  
Author(s):  
Perry Bartelt ◽  
Othmar Buser

AbstractAn essential problem in snow science is to predict the changing form of ice grains within a snow layer. Present theories are based on the idea that form changes are driven by mass diffusion induced by temperature gradients within the snow cover. This leads to the well-established theory of isothermal- and temperature-gradient metamorphism. Although diffusion theory treats mass transfer, it does not treat the influence of this mass transfer on the form — the curvature radius of the grains and bonds — directly. Empirical relations, based on observations, are additionally required to predict flat or rounded surfaces. In the following, we postulate that metamorphism, the change of ice surface curvature and size, is a process of thermodynamic optimization in which entropy production is minimized. That is, there exists an optimal surface curvature of the ice grains for a given thermodynamic state at which entropy production is stationary. This state is defined by differences in ice and air temperature and vapor pressure across the interfacial boundary layer. The optimal form corresponds to the state of least wasted work, the state of minimum entropy production. We show that temperature gradients produce a thermal non-equilibrium between the ice and air such that, depending on the temperature, flat surfaces are required to mimimize entropy production. When the temperatures of the ice and air are equal, larger curvature radii are found at low temperatures than at high temperatures. Thus, what is known as isothermal metamorphism corresponds to minimum entropy production at equilibrium temperatures, and so-called temperature-gradient metamorphism corresponds to minimum entropy production at none-quilibrium temperatures. The theory is in good agreement with general observations of crystal form development in dry seasonal alpine snow.


Author(s):  
Bruce E. Hobbs ◽  
Alison Ord

A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10 4 –10 7 years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson–Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient ‘ponds’ of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic–viscous at high temperatures to elastic–plastic–viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.


Entropy ◽  
2010 ◽  
Vol 12 (3) ◽  
pp. 473-479 ◽  
Author(s):  
Paško Županović ◽  
Srećko Botrić ◽  
Davor Juretić ◽  
Domagoj Kuić

Sign in / Sign up

Export Citation Format

Share Document