Performance improvement of solar PV power conversion system through low duty cycle DC‐DC converter

Author(s):  
Matheswaran Alagu ◽  
Prem Ponnusamy ◽  
Sivaraman Pandarinathan ◽  
Jagabar Sathik Mohamed Ali
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2178
Author(s):  
Luigi Danilo Tornello ◽  
Salvatore Foti ◽  
Mario Cacciato ◽  
Antonio Testa ◽  
Giacomo Scelba ◽  
...  

A technique to improve the performance of grid-connected induction motors by exploiting an auxiliary winding set is proposed in this paper. This auxiliary winding features the same distribution of the main winding, although with a reduced number of turns and it is fed by an inverter a fraction of the power in comparison with the rated size of the induction motor. As shown in the paper, through the auxiliary winding, it is possible to set the machine power factor, increasing the efficiency of the power conversion system and mitigating speed oscillations due to torque disturbances. A mitigation of the grid current peaks due to motor start-up is obtainable. First, the proposed technique is theoretically introduced, then a feasibility assessment is accomplished by simulations.


2021 ◽  
Author(s):  
Hina Parveen ◽  
Utkarsh Sharma ◽  
Bhim Singh

2013 ◽  
Vol 24 (2) ◽  
pp. 230-242
Author(s):  
Liang-Yin CHEN ◽  
Zhen-Lei LIU ◽  
Xun ZOU ◽  
Zheng-Kun XU ◽  
Zhen-Qian GUO ◽  
...  

2013 ◽  
Vol 33 (12) ◽  
pp. 3394-3397
Author(s):  
Dan XU ◽  
Xiaojiang CHEN ◽  
Junjie HUANG ◽  
Xiaoyan YIN ◽  
Dingyi FANG

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 473 ◽  
Author(s):  
Bor-Ren Lin ◽  
Yen-Chun Liu

A hybrid PWM converter is proposed and investigated to realize the benefits of wide zero-voltage switching (ZVS) operation, wide voltage input operation, and low circulating current for direct current (DC) wind power conversion and solar PV power conversion applications. Compared to the drawbacks of high freewheeling current and hard switching operation of active devices at the lagging-leg of conventional full bridge PWM converter, a three-leg PWM converter is studied to have wide input-voltage operation (120–600 V). For low input-voltage condition (120–270 V), two-leg full bridge converter with lower transformer turns ratio is activated to control load voltage. For high input-voltage case (270–600 V), PWM converter with higher transformer turns ratio is operated to regulate load voltage. The LLC resonant converter is connecting to the lagging-leg switches in order to achieve wide load range of soft switching turn-on operation. The high conduction losses at the freewheeling state on conventional full bridge converter are overcome by connecting the output voltage of resonant converter to the output rectified terminal of full bridge converter. Hence, a 5:1 (600–120 V) hybrid converter is realized to have less circulating current loss, wide input-voltage operation and wide soft switching characteristics. An 800 W prototype is set up and tested to validate the converter effectiveness.


Sign in / Sign up

Export Citation Format

Share Document