quiet period
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Xuebin Gu ◽  
Tongbin Zhao ◽  
Weiyao Guo ◽  
Xufei Gong ◽  
Yongqiang Zhao ◽  
...  

Abstract To study the influence of fissure angle on the failure mechanism of coal mass, uniaxial compression tests were conducted on coal specimens with different fissure angles. The failure process and acoustic emission characteristics during loading were obtained. The mechanical properties and failure mode were further analyzed. The results showed that (1) The stress-strain behavior of specimens with different fissure angles can be divided into four typical stages, compaction, elastic deformation, crack growth and propagation, and strain-softening. The existence of pre-existing fissures reduces the duration of the elastic stage with an obvious influence on the crack growth and propagation stage, and strain-softening stage. (2) The uniaxial compressive strength, elastic modulus of the specimens containing pre-existing fissure are all lower than those of the unfissured. The strength and elastic modulus do not change significantly with fissure angle, which is closely related to the primary fracture of the coal. (3) With the increase of the fissure angle, the crack initiation location moves from the center of the pre-existing fissure to the tip. While fissure angle has no obvious effect on the crack propagation direction, the cracks develop along the loading direction. (4) The AE characteristics can be divided into three typical periods, quiet period, active period, and remission period. With the increase of the fissure angle, the duration proportion of the quiet period increases, indicating that the energy storage time of coal increases. With the increase of the fissure angle, the occurrence time of low frequency and high energy signal is delayed, indicating that the large-size rupture gradually concentrates in the late loading period. (5) Compared with rock samples containing pre-existing fissure, coal specimens have more primary fractures, and the failure mechanism of coal is dominated by the non-uniform primary fractures.


2021 ◽  
Vol 13 (8) ◽  
pp. 1533
Author(s):  
Tao Shi ◽  
Gaopeng Lu ◽  
Yanfeng Fan ◽  
Xiao Li ◽  
Yang Zhang

The spectrum analysis of the lightning current in the experiment campaign of 2019 reveals that the lightning current waveform contains rich medium-frequency (MF) radiation signals in the initial stage. However, there is a lack of resolution for MF signals by using conventional magnetic sensors. The bandwidth of radio-frequency magnetic field measurement is improved by extending to 20 kHz–1.2 MHz in the Guangdong Comprehensive Observation Experiment on Lightning Discharge (GCOELD). During the previously noticed “quiet period” that can only maintain the upward propagation with relatively small-scale breakdown, magnetic pulses of quiet period (MPQPs) are discerned more clearly than the previous experiment in GCOELD. Aided by the improvement of a magnetic sensor, this paper captures richer magnetic field signals radiated from the weak discharge of the precursory phage than previous experiments in GCOELD. The analysis shows that both aborted UPLs and UPLs are caused by weak discharge pulses called initial precursor pulses (IPPs), which are very similar to the amplitude of the streamer discharge obtained in the laboratory. In summary, the signals detected by an improved magnetic sensor will provide an important reference for exploring the pulse characteristics of the whole discharge process and formation mechanism of the UPL in the initial stage of triggered lightning.


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Edward Nyongesa ◽  
Ndinya Boniface ◽  
Omondi George

Equatorial Plasma Bubbles (EPBs) are irregular plasma density depletions in the ambient electron density in the equatorial F-region ionosphere generated after sunset. EPBs are known to bring disruptions to telecommunication and navigation systems. This paper investigates the occurrence of EPBs over Kisumu, Kenya (Geomagnetic coordinates: 9.64o S, 108.59o E; Geographic coordinates: 0.02o S, 34.6o E) for a few selected quiet and storm days between 1st January 2013 and 31st December 2014 which was a high Solar activity period for Solar Cycle 24. The study brings out EPB occurrence pattern over Kisumu, Kenya for the selected quiet and storm days of 2013 and 2014. The Receiver Independent Exchange (RINEX) data was retrieved from the Kisumu high data-rate NovAtel GSV4004B SCINDA-GPS receiver. The data was unzipped and processed to obtain Vertical Total Electron Content (VTEC), amplitude scintillation (S4) and Universal Time (UT) which were then fed into MATLAB to generate VTEC and S4 plots against UT for each selected quiet and storm day within the years 2013 and 2014. The Total Electron Content (TEC) depletion depths and S4 index values between 16:00 and 20:00 UT for each selected quiet and storm day were extracted from the VTEC and S4 plots and used to plot TEC depletion depths and S4 plots. The Rate of Change of TEC (ROT) and Rate of Change of TEC Index (ROTI) between 16:00 and 20:00 UT were generated from VTEC and used to plot ROT and the corresponding ROTI plots against UT. TEC depletion depths and ROTI values for each selected quiet and storm day between 16:00 and 20:00 UT were extracted and used to plot TEC depletion depths and ROTI plots and S4 index and ROTI plots. In this study, the enhancement of S4 index corresponded well with TEC depletions, increased fluctuation of ROT and higher ROTI values between 16:00UT and 20:00UT for most days. This correspondence was used in inferring the occurrence of EPBs during the selected quiet and storm days of the years 2013 and 2014. The obtained results showed that the highest EPB occurrence was during March equinox with 33.33% occurrence in the year 2013 and 30.76% occurrence in the year 2014, followed by the September equinox which had 20.38% occurrence in 2013 and 17.26% occurrence in 2014. The seasonal variation of EPB occurrence was attributed to the variation in the daytime E x B drift velocities. Larger E x B drift velocities resulted in increased EPB occurrence in the equinoctial period (March, April, August and September) and November solstice period (November and December) while lower E x B drift velocities resulted in reduced EPB occurrence in the June solstice period (June and July). The percentage EPB occurrence in the year 2013 was 6.49% while in the year 2014 was 4.32%. The storm period had percentage EPB occurrence of 21.42% in the year 2013 and 21.88% in the year 2014 while the quiet period had percentage EPB occurrence of 18.75% in the year 2013 and 7.89% in the year 2014. These results clearly showed that the percentage EPB occurrence was higher during the storm period than in the quiet period. Hence the development of EPBs was enhanced by geomagnetic activity through several competing dynamics such as Prompt Penetration Electric Field (PPEF), Disturbance Dynamo Electric Field (DDEF) and reduction in electron density due to increased recombination rates.  


2021 ◽  
Vol 17 (1) ◽  
pp. 155014772098611 ◽  
Author(s):  
Tianzuo Wang ◽  
Linxiang Wang ◽  
Fei Xue ◽  
Mengya Xue

To explore the development mechanism of cracks in the process of rock failure, triaxial compression tests with simultaneous acoustic emission monitoring were performed on granite specimens using the MTS rock mechanics test system. The frequency-domain information of the acoustic emission signal was obtained by the fast Fourier transform. The Gutenberg–Richter law was used to calculate the acoustic emission signals and obtain the b-value dynamic curve in the loading process. Combined with the stiffness curve of granite specimens and acoustic emission signal in the time domain and frequency domain, the crack development characteristics in different stages were analyzed. The results showed that the acoustic emission signals of granite samples under triaxial compression can be divided into four stages: quiet period 1, active stage 1, quiet period 2, and active stage 2. b-value attained its maximum value in the active phase 2 when it is close to the sample loss, and then drops rapidly, which means the propagation of cracks and the formation of large cracks. The acoustic emission signal’s dominant frequency was not more than 500 kHz, mostly concentrated in the medium-frequency band (100–200 kHz), which accounted for more than 80%. The proportion of signals in each frequency band can reflect the distribution of the three kinds of cracks, while the change in low-frequency signals can reflect the breakthrough of microcracks and the formation time of macrocracks in granite samples. By fully analyzing the characteristics of acoustic emission signals in the time domain and frequency domain, the time and conditions of producing large cracks can be determined accurately and efficiently.


Author(s):  
J.-F. Ripoll ◽  
M.H. Denton ◽  
D.P. Hartley ◽  
G.D. Reeves ◽  
D. Malaspina ◽  
...  

Science ◽  
2020 ◽  
Vol 369 (6509) ◽  
pp. 1335.14-1337
Author(s):  
Brent Grocholski
Keyword(s):  

Science ◽  
2020 ◽  
Vol 369 (6509) ◽  
pp. 1338-1343 ◽  
Author(s):  
Thomas Lecocq ◽  
Stephen P. Hicks ◽  
Koen Van Noten ◽  
Kasper van Wijk ◽  
Paula Koelemeijer ◽  
...  

Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.


Sign in / Sign up

Export Citation Format

Share Document