scholarly journals Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure

2003 ◽  
Vol 227 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Hyun-Jung Kim ◽  
Mi-Hye Lee ◽  
Hyun-Sik Park ◽  
Mi-Hyun Park ◽  
Sang-Won Lee ◽  
...  
2003 ◽  
Vol 70 ◽  
pp. 125-133 ◽  
Author(s):  
Tim E. Cawston ◽  
Jenny M. Milner ◽  
Jon B. Catterall ◽  
Andrew D. Rowan

We have investigated proteinases that degrade cartilage collagen. We show that pro-inflammatory cytokines act synergistically with oncastatin M to promote cartilage collagen resorption by the up-regulation and activation of matrix metalloproteinases (MMPs). The precise mechanisms are not known, but involve the up-regulation of c-fos, which binds to MMP promoters at a proximal activator protein-1 (AP-1) site. This markedly up-regulates transcription and leads to higher levels of active MMP proteins.


2001 ◽  
Vol 268 (6) ◽  
pp. 1802-1810
Author(s):  
Danielle Naville ◽  
Estelle Bordet ◽  
Marie-Claude Berthelon ◽  
Philippe Durand ◽  
Martine Begeot

Biochemistry ◽  
1990 ◽  
Vol 29 (12) ◽  
pp. 3030-3039 ◽  
Author(s):  
Katsuko Yamashita ◽  
Koji Inui ◽  
Kazuhide Totani ◽  
Naohisa Kochibe ◽  
Masumi Furukawa ◽  
...  

2005 ◽  
Vol 281 (4) ◽  
pp. 1956-1963 ◽  
Author(s):  
Sunita M. Gopalan ◽  
Katarzyna M. Wilczynska ◽  
Barbara S. Konik ◽  
Lauren Bryan ◽  
Tomasz Kordula

2004 ◽  
Vol 18 (3) ◽  
pp. 558-573 ◽  
Author(s):  
Pulak R. Manna ◽  
Darrell W. Eubank ◽  
Douglas M. Stocco

Abstract cAMP-dependent mechanisms regulate the steroidogenic acute regulatory (StAR) protein even though its promoter lacks a consensus cAMP response-element (CRE, TGACGTCA). Transcriptional regulation of the StAR gene has been demonstrated to involve combinations of DNA sequences that provide recognition motifs for sequence-specific transcription factors. We recently identified and characterized three canonical 5′-CRE half-sites within the cAMP-responsive region (−151/−1 bp) of the mouse StAR gene. Among these CRE elements, the CRE2 half-site is analogous (TGACTGA) to an activator protein-1 (AP-1) sequence [TGA(C/G)TCA]; therefore, the role of the AP-1 transcription factor was explored in StAR gene transcription. Mutation in the AP-1 element demonstrated an approximately 50% decrease in StAR reporter activity. Using EMSA, oligonucleotide probes containing an AP-1 binding site were found to specifically bind to nuclear proteins obtained from mouse MA-10 Leydig and Y-1 adrenocortical tumor cells. The integrity of the sequence-specific AP-1 element in StAR gene transcription was assessed using the AP-1 family members, Fos (c-Fos, Fra-1, Fra-2, and Fos B) and Jun (c-Jun, Jun B, and Jun D), which demonstrated the involvement of Fos and Jun in StAR gene transcription to varying degrees. Disruption of the AP-1 binding site reversed the transcriptional responses seen with Fos and Jun. EMSA studies utilizing antibodies specific to Fos and Jun demonstrated the involvement of several AP-1 family proteins. Functional assessment of Fos and Jun was further demonstrated by transfecting antisense c-Fos, Fra-1, and dominant negative forms of Fos (A-Fos) and c-Jun (TAM-67) into MA-10 cells, which significantly (P < 0.01) repressed transcription of the StAR gene. Mutation of the AP-1 site in combination with mutations in other cis-elements resulted in a further decrease of StAR promoter activity, demonstrating a functional cooperation between these factors. Mammalian two-hybrid assays revealed high-affinity protein-protein interactions between c-Fos and c-Jun with steroidogenic factor 1, GATA-4, and CCAAT/enhancer binding protein-β. These findings demonstrate that Fos and Jun can bind to the TGACTGA element in the StAR promoter and provide novel insights into the mechanisms regulating StAR gene transcription.


Sign in / Sign up

Export Citation Format

Share Document