normal human liver
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 16)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yunqiong Gu ◽  
Wen-Ying Shen ◽  
Qi-Yuan Yang ◽  
Zhen-Feng Chen ◽  
Hong Liang

Three ruthenium(III) complexes with pyrazolopyrimidine [Ru(Ln)(H2O)Cl3] (13, n=13) were prepared and characterized. These Ru(III) compounds show strong cytotoxicity against six cancer cell lines and low toxicity to normal human liver...


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaohui Tang ◽  
Bohao Liu ◽  
Chen Zhang ◽  
Wenbin Tang ◽  
Shitian Liang ◽  
...  

BackgroundSmall ubiquitin-like modifier specific peptidase 2 (SENP2) suppresses the progression and chemoresistance of several cancers, while few studies report its role in hepatocellular carcinoma (HCC). This study aimed to evaluate the effect of SENP2 on stemness, sorafenib sensitivity, and downstream pathway in HCC, with validation of its molecular mechanisms by compensation experiment.MethodsSENP2 was regulated by plasmid transfection; meanwhile, in a compensation experiment, protein kinase B (AKT) was activated by SC79 treatment and β-catenin (CTNNB1) was overexpressed by plasmid transfection. After modification, sorafenib sensitivity was detected by cell counting kit-8 assay; stemness was evaluated by CD133+ cell proportion and sphere formation assay.ResultsSENP2 was decreased in HCC cell lines (including Hep3B, Li7, and Huh7) compared with normal human liver epithelial cell lines, which was further reduced in HCC stem cells than in normal HCC cells. Subsequently, SENP2 overexpression inhibited CD133+ cell proportion, decreased sphere formation ability, promoted sorafenib sensitivity, suppressed AKT and glycogen synthase kinase-3β (GSK3β) phosphorylation, and reduced CTNNB1 expression in Huh7 and Hep3B cells, while SENP2 knockdown showed the reverse effects. The following compensation experiment revealed that activating AKT or overexpressing CTNNB1 promoted CD133+ cell proportion and sphere formation ability but suppressed sorafenib sensitivity in Huh7 and Hep3B cells. Moreover, activating AKT or overexpressing CTNNB1 attenuated the effect of SENP2 overexpression on stemness and sorafenib sensitivity in Huh7 and Hep3B cells.ConclusionSENP2 suppresses HCC stemness and increases sorafenib sensitivity through inactivating the AKT/GSK3β/CTNNB1 signaling pathway.


Author(s):  
Nur Asna Azhar ◽  
Siti Aishah Abu Bakar ◽  
Marimuthu Citartan ◽  
Nor Hazwani Ahmad

Background: The demand in the development of cancer nanomedicine has increased due to various limitations in conventional cancer therapy. This study assessed the mRNA transcriptomic profiling of human HepG2 cells exposed to C. roseus-AgNPs. Methods: The proliferative activity of hepatocellular carcinoma (HepG2) and normal human liver (THLE3) cells treated with C. roseus‑AgNPs were measured using MTT assay. The RNA samples were extracted and sequenced using BGIseq500 platform. This is followed by data filtering, mapping, gene expression analysis, DEG analysis, GO analysis, and pathway analysis. Results: The mean IC50 values of C. roseus‑AgNPs on HepG2 was 4.38±1.59 µg/mL while on THLE3 cells was 800±1.55 µg/mL. Transciptomic profiling revealed an alteration of 296 genes. C. roseus‑AgNPs induced the expression of stress-associated genes such as MT, HSP and HMOX-1. Cellular signaling pathways were potentially activated through MAPK, TNF and TGF pathways that responsible for apoptosis and cell cycle arrest. The alteration of ARF6, EHD2, FGFR3, RhoA, EEA1, VPS28, VPS25, TSG101 indicated the uptake of C. roseus-AgNPs via both clathrin-dependent and clathrin-independent endocytosis. Conclusions: This study provides the new insights on gene expression study of biosynthesized AgNPs on cancer cells. The cytotoxicity effect is mediated by the aberrant gene alteration, and more interestingly the unique selective antiproliferative properties indicates the C. roseus‑AgNPs as an ideal anticancer candidate.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yonglan Wang ◽  
Kun Cao

Background. Immune checkpoint inhibitor therapy targeting antiprogrammed cell death-1 (anti-PD-1) or its ligand (anti-PD-L1) is effective in the treatment of some hepatocellular carcinomas (HCC). Hence, further identification of biological targets related to PD-L1 regulation in HCC is beneficial to improve the clinical efficacy of immunotherapy. Some HCC cells express lysine-specific demethylase 1A (KDM1A), which is implicated in the reduced survival time of patients. Here, we studied whether the level of PD-L1 and the immunosuppression are regulated by KDM1A and its miRNA in HCC cells. Methods. In the present study, we studied clinical data from The Cancer Genome Atlas (TCGA) database. We performed qPCR and western blotting assays to measure the expression level of genes of interest. PD-L1 expression was also analyzed by FACS. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was used to generate gene knockout cells to investigate the relationships of genes of interest. We also developed a reporter gene assay (RGA) to explore the changes in T cell-induced antitumor immunity relative to PD-L1 expression in HCC cells. The binding between proteins and promoters or miRNAs and their target genes was explored by luciferase reporter assays. Results. The results showed that PD-L1 and KDM1A were increased in HCC patients and cells, and KDM1A promoted the expression of PD-L1 in HCC cells. Our findings showed that the enhancement of PD-L1 expression was not attributed to mitochondrial dysfunction caused by increases in KDM1A in HCC cells. Furthermore, we observed a lower level of MEF2D methylation in HCC cells than in normal human liver cells. Demethylated MEF2D could bind to the promoter of PD-L1 and activate its expression, while KDM1A interacted with MEF2D and acted as a demethylase to reduce its methylation. Moreover, a new miRNA, miR-329-3p, targeting KDM1A was found to regulate the PD-L1 expression profile in HCC cells. In the xenograft model, the tumors treated with miR-329-3p showed growth inhibition. Conclusions. Mechanistically, miR-329-3p inhibits tumor cellular immunosuppression and reinforces the response of tumor cells to T cell-induced cytotoxic effect by targeting KDM1A mRNA and downregulating its expression, which contributed to MEF2D demethylation and activation of PD-L1 expression.


2021 ◽  
Vol 76 (3-4) ◽  
pp. 201-210
Author(s):  
Nabeel A. Abdul-Ridha ◽  
Afraah D. Salmaan ◽  
Rita Sabah ◽  
Bahjat Saeed ◽  
Najim A. Al-Masoudi

Abstract The development of new prostate cancer protein receptor cytochrome P450 17A1 inhibitors offers the possibility of generating structures of increased potency. To this end, the chalcone analogs 7 and 8 were prepared from treatment of methyl 3-oxo-3H-benzocoumarin-2-carboxylate (4) with aryl aldehydes. Treatment of 7 and 8 with three anti-inflammatory drugs, flurbiprofen, ketoprofen and ibuprofen, in the presence of POCl3/DMAP gave the ester analogs 9–12. Analogously, treatment of ethyl 3-oxo-3H-benzocoumarin-2-carboxylate (15), prepared previously from 2-hydroxy-1-naphthaldehyde (13) and dimethylmalonate (14), with various arylamines: 4-bromoaniline, 2-amino-6-methylpyridine, amino-antipyrine and 2-amino-5-nitrothiazole, in the presence of potassium tert-butoxide gave the benzocoumarine-3-arylamide analogs. The in vitro cytotoxic activities of 9–12 and 16–19 were evaluated against human prostate cancer cell lines (PC-3) and normal human liver epithelia (WRL-68) by MTT assay. Compounds 10 and 17 were the most active cytotoxic agents among the series against PC-3 cells with IC50 values of 71.35 and 78.25 μg mL–1 with SI values of 3.0 and 4.2, respectively (calculated from the cytotoxicity effects of 10 and 17 on the normal human liver epithelia [WRL-68]). Furthermore, compounds 11 and 12 were tested against breast cancer (HER2 cell lines), prostate cancer (DU-135 cell lines) and MCF-7 but were inactive. Molecular docking studies between the protein receptor CYPP450 17A1 and compounds 10 and 17 revealed that these compounds primarily form hydrophobic interactions with the receptor.


2021 ◽  
Vol 41 (4) ◽  
pp. 650-650
Author(s):  
An‐liu Zhang ◽  
Shun‐fang Tang ◽  
Yue Yang ◽  
Chang‐zhe Li ◽  
Xue‐jiao Ding ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 69-83
Author(s):  
Junwei Shu ◽  
Jiayuan Du ◽  
Futao Wang ◽  
Yong Cheng ◽  
Gangxin Chen ◽  
...  

Abstract Several articles have indicated that circular RNAs are involved in pathogenesis of human cancers. Nevertheless, the role of circ_0091579 in hepatocellular carcinoma (HCC) progression remains to be revealed. Quantitative reverse transcriptase polymerase chain reaction was carried out to examine the expression of circ_0091579 and miR-1287. The proliferation of HCC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was performed to analyze cell cycle progression and apoptosis. Western blot assay was conducted to detect the protein expression of CyclinD1, Cleaved caspase3, and pyruvate dehydrogenase kinase 2 (PDK2). Cell glycolysis was evaluated by measuring the uptake of glucose, the production of lactate, and extracellular acidification rate. The target relationship between miR-1287 and circ_0091579 or PDK2 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA-pull down assay. The enrichment of circ_0091579 was enhanced in HCC tissues (n = 77) and four HCC cell lines (HB611, Huh-7, MHCC97, and SNU423) compared with adjacent non-tumor tissues (n = 77) and normal human liver cell line THLE-2. Circ_0091579 mediated the promotion of proliferation and glycolysis and the suppression of apoptosis of HCC cells. MiR-1287 was a direct target of circ_0091579 in HCC cells. MiR-1287 knockdown reversed the effects caused by circ_0091579 interference on the functions of HCC cells. PDK2 could bind to miR-1287 in HCC cells. Circ_0091579 upregulated the enrichment of PDK2 by acting as a sponge of miR-1287 in HCC cells. The influence caused by circ_0091579 intervention on HCC cells was attenuated by overexpression of PDK2. Circ_0091579 interference impeded the progression of HCC in vivo. Circ_0091579 deteriorated HCC by promoting the proliferation and glycolytic metabolism and suppressing the apoptosis of HCC cells via miR-1287/PDK2 axis.


2021 ◽  
Vol 11 (1) ◽  
pp. 135-141
Author(s):  
Sheng Zheng ◽  
Hua Yang ◽  
Yefei Chang ◽  
Dan Zhao ◽  
Juan Yang

We examined the effect of the BBC3 gene on hyperplasia and apoptosis in HepG2 cells and its underlying mechanism. Quantitative RT-PCR was used to determine the level of BBC3 expression in HL-7702 normal human liver cells and four different hepatocellular carcinoma cell lines (HepG2, HuH-7, HCCLM3 and MHCC97H). Transfection was performed with Lipofectamine 2000 reagent and the transfectants were divided into three groups: pcDNA-BBC3 group (transfected BBC3 over-expressing plasmid), pcDNA-NC group (transfected empty plasmid), and a Ctrl group (not transfected). Quantitative RT-PCR and western blot analysis were used to measure BBC3 expression. The CCK-8 assay was used to determine the effect of BBC3 on HepG2 cell proliferation. Flow cytometry was used for testing the effect of overexpressing BBC3 on apoptosis in HepG2 cells. The levels of cleaved-Caspase-3 (C-Caspase-3), cleaved-Caspase-9 (C-Caspase-9), and proteins associated with the p53 signaling pathway were assessed by western blot analysis. The level of BBC3 mRNA in HL-7702 normal human liver cells was significantly higher compared with that in human hepatocellular carcinoma cells including HepG2, HuH-7, HCCLM3 and MHCC97H (P < 0.05). The lowest level of BBC3 mRNA was observed in HepG2 cells. The level of BBC3 mRNA and protein in HepG2 cells were significantly higher compared with that of the pcDNA-NC group following transfection with a BBC3 overexpressing plasmid. HepG2 cell proliferation in the pcDNA-NC group was higher compared with that of the pcDNA-BBC3-transfected group (P < 0.05). The apoptotic rate and levels of cleaved-Caspase-3, cleaved-Caspase-9, p53, phospho-p53, and p21 protein in cells were higher compared with that of the pcDNA-NC group. No change was observed in the pcDNA-NC and Ctrl groups. The BBC3 gene was down-regulated in hepatocellular carcinoma cells. HepG2 cell proliferation can be inhibited and HepG2 cell apoptosis can be induced by the overexpression of BBC3 through activation of the p53 signaling pathway.


2021 ◽  
Vol 9 (5) ◽  
Author(s):  
Beth Murray ◽  
Niroshaa Arumuggam ◽  
Tess Astatkie ◽  
H.P. Rupasinghe

Canine osteosarcoma (OSA) is the most common form of bone cancer diagnosticated in dogs and is highly metastatic. There has been limited advancement in discovering an effective treatment for OSA in the last few decades. The major drawback of the currently used chemotherapeutic drugs is their side effects. In this preliminary study, we investigated the efficacy of using a novel food-derived drug, phloridzin docosahexaenoate (PZ-DHA), in the treatment of canine OSA in vitro. PZ-DHA was selectively cytotoxic to canine OSA D17 cells, while normal human liver cells (WRL68) were more resistant. We also found that PZ-DHA had enhanced cellular uptake in D17 cells compared to its precursors and in WRL68 cell line. This study provides preliminary evidence that PZ-DHA needs to be further assessed as a safe and efficacious new drug in the treatment of both canine and human OSA.


Sign in / Sign up

Export Citation Format

Share Document