scholarly journals Zika virus can directly infect and damage the auditory and vestibular components of the embryonic chicken inner ear

2020 ◽  
Vol 249 (7) ◽  
pp. 867-883
Author(s):  
Ankita Thawani ◽  
Nabilah H. Sammudin ◽  
Hannah S. Reygaerts ◽  
Alexis N. Wozniak ◽  
Vidhya Munnamalai ◽  
...  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zoe F Mann ◽  
Héctor Gálvez ◽  
David Pedreno ◽  
Ziqi Chen ◽  
Elena Chrysostomou ◽  
...  

The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.


2020 ◽  
Vol 395 ◽  
pp. 108000
Author(s):  
Kathleen T. Yee ◽  
Biswas Neupane ◽  
Fengwei Bai ◽  
Douglas E. Vetter

Cell Reports ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 692-700 ◽  
Author(s):  
Ankita Thawani ◽  
Devika Sirohi ◽  
Richard J. Kuhn ◽  
Donna M. Fekete

Author(s):  
C.D. Fermin ◽  
M. Igarashi

Otoconia are microscopic geometric structures that cover the sensory epithelia of the utricle and saccule (gravitational receptors) of mammals, and the lagena macula of birds. The importance of otoconia for maintanance of the body balance is evidenced by the abnormal behavior of species with genetic defects of otolith. Although a few reports have dealt with otoconia formation, some basic questions remain unanswered. The chick embryo is desirable for studying otoconial formation because its inner ear structures are easily accessible, and its gestational period is short (21 days of incubation).The results described here are part of an intensive study intended to examine the morphogenesis of the otoconia in the chick embryo (Gallus- domesticus) inner ear. We used chick embryos from the 4th day of incubation until hatching, and examined the specimens with light (LM) and transmission electron microscopy (TEM). The embryos were decapitated, and fixed by immersion with 3% cold glutaraldehyde. The ears and their parts were dissected out under the microscope; no decalcification was used. For LM, the ears were embedded in JB-4 plastic, cut serially at 5 micra and stained with 0.2% toluidine blue and 0.1% basic fuchsin in 25% alcohol.


1975 ◽  
Vol 8 (2) ◽  
pp. 455-466 ◽  
Author(s):  
James B. Snow ◽  
Fumiro Suga
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document