Genetic Manipulation of the Embryonic Chicken Inner Ear

Author(s):  
Nicolas Daudet ◽  
Magdalena Żak ◽  
Thea Stole ◽  
Stephen Terry
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zoe F Mann ◽  
Héctor Gálvez ◽  
David Pedreno ◽  
Ziqi Chen ◽  
Elena Chrysostomou ◽  
...  

The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Giulia Crispino ◽  
Fabian Galindo Ramirez ◽  
Matteo Campioni ◽  
Veronica Zorzi ◽  
Mark Praetorius ◽  
...  

2020 ◽  
Vol 249 (7) ◽  
pp. 867-883
Author(s):  
Ankita Thawani ◽  
Nabilah H. Sammudin ◽  
Hannah S. Reygaerts ◽  
Alexis N. Wozniak ◽  
Vidhya Munnamalai ◽  
...  

Author(s):  
C.D. Fermin ◽  
M. Igarashi

Otoconia are microscopic geometric structures that cover the sensory epithelia of the utricle and saccule (gravitational receptors) of mammals, and the lagena macula of birds. The importance of otoconia for maintanance of the body balance is evidenced by the abnormal behavior of species with genetic defects of otolith. Although a few reports have dealt with otoconia formation, some basic questions remain unanswered. The chick embryo is desirable for studying otoconial formation because its inner ear structures are easily accessible, and its gestational period is short (21 days of incubation).The results described here are part of an intensive study intended to examine the morphogenesis of the otoconia in the chick embryo (Gallus- domesticus) inner ear. We used chick embryos from the 4th day of incubation until hatching, and examined the specimens with light (LM) and transmission electron microscopy (TEM). The embryos were decapitated, and fixed by immersion with 3% cold glutaraldehyde. The ears and their parts were dissected out under the microscope; no decalcification was used. For LM, the ears were embedded in JB-4 plastic, cut serially at 5 micra and stained with 0.2% toluidine blue and 0.1% basic fuchsin in 25% alcohol.


2018 ◽  
Vol 2 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Qiong Wang ◽  
Michael J. Betenbaugh

As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.


1975 ◽  
Vol 8 (2) ◽  
pp. 455-466 ◽  
Author(s):  
James B. Snow ◽  
Fumiro Suga
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document