scholarly journals Estimating effects of arable land use intensity on farmland birds using joint species modeling

2019 ◽  
Vol 29 (4) ◽  
pp. e01875 ◽  
Author(s):  
Martin Stjernman ◽  
Ullrika Sahlin ◽  
Ola Olsson ◽  
Henrik G. Smith
2016 ◽  
Vol 59 ◽  
pp. 569-579 ◽  
Author(s):  
Guangsheng Liu ◽  
Hongmei Wang ◽  
Yingxuan Cheng ◽  
Biao Zheng ◽  
Zongliang Lu

2020 ◽  
Vol 99 ◽  
pp. 104845 ◽  
Author(s):  
Sijing Ye ◽  
Changqing Song ◽  
Shi Shen ◽  
Peichao Gao ◽  
Changxiu Cheng ◽  
...  

2011 ◽  
Vol 150 (2) ◽  
pp. 179-190 ◽  
Author(s):  
D. ZHOU ◽  
P. AN ◽  
Z. PAN ◽  
F. ZHANG

SUMMARYA cropping system is the consequence of environmental and socio-economic conditions that determine the intensity of agricultural land use. Accurate information on regional land use intensity and changes in land use intensity is important for food security and sustainable resource management in China. Therefore, a better understanding of the spatial and temporal changes in arable land use intensity (ALUI) based on the cropping system used is essential to comprehend the changes in land use and the sustainability of the food system. The purpose of the present study was to investigate the spatial difference in ALUI and how it has changed in China by comparing data on cropping systems from 1985 and 2005. The basic cropping system data were acquired from the 1985 reference book and the 2005 national land use investigation. The ALUI was defined by the application of inputs (irrigation water and fertilizer) to arable land and the duration of disturbances (the duration of cultivation and the frequency of cropping), and it was calculated using the information entropy approach at the cropping region scale (cropping region being defined by the geographical and climatic conditions at the beginning of the 1980s). Spatial and temporal changes in the ALUI in China over the past two decades were observed and analysed. The results indicated a clear pattern in ALUI, increasing from the north to the south in 2005. Furthermore, the ALUI significantly increased after the 1980s, but the rate of increase was lower in the south than in the north. The most intensive land use in 1985 was in the area of the lower reach of the Yangtze and Huai Rivers, and it expanded northwards towards the Huang-Huai-Hai plain in 2005. The large increase in intensity in the northern single-cropping regions was strongly associated with a rapid increase in inputs and longer duration of cultivation. Decreases in duration of cultivation and planting area helped slow the ALUI increase in multiple cropping regions, which were concentrated in coastal and economically developed regions where more fertile soil and suitable climates existed, allowing the growth of multiple crops. These results suggested that a decrease in the planting area and a slow increase in the ALUI in the lower reaches of the Yangtze River, South China, Southeast China and Northeast China should be of concern, but land use in some western regions should maintain the land production capacity to build sustainable cropping. In the future, it will be necessary to produce more food in a more sustainable way.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Yi Lou ◽  
Guanyi Yin ◽  
Yue Xin ◽  
Shuai Xie ◽  
Guanghao Li ◽  
...  

In the rapid process of urbanization in China, arable land resources are faced with dual challenges in terms of quantity and quality. Starting with the change in the coupling coordination relationship between the input and output on arable land, this study applies an evaluation model of the degree of coupling coordination between the input and output (D_CCIO) on arable land and deeply analyzes the recessive transition mechanism and internal differences in arable land use modes in 31 provinces on mainland China. The results show that the total amount and the amount per unit area of the input and output on arable land in China have presented different spatio-temporal trends, along with the mismatched movement of the spatial barycenter. Although the D_CCIO on arable land increases slowly as a whole, 31 provinces show different recessive transition mechanisms of arable land use, which is hidden in the internal changes in the input–output structure. The results of this study highlight the different recessive transition patterns of arable land use in different provinces of China, which points to the outlook for higher technical input, optimized planting structure, and the coordination of human-land relationships.


2019 ◽  
Author(s):  
Ajishnu Roy ◽  
Kousik Pramanick

AbstractAgriculture, along with industry and household sector are three major sectors of human consumption. Agriculture has proved to be a major contributor to exceeding planetary boundaries. Here, we have explored the impact of agriculture in the Earth system processes, through eight dimensions of planetary boundaries or safe operating spaces: climate change (10.73%), freshwater use (91.56%), arable land use (37.27%), nitrogen use (95.77%), phosphorus use (87.28%), ecological footprint (19.42%), atmospheric pollution (2.52% - 38.08%) and novel entities. In this work, we have also shown role of agriculture to the socio-economic development dimensions: gender equality, employment and economic growth. We have shown that the safe operating limits for agriculture are going to decline by almost 55% (climate change), 300% (freshwater use), 50-55% (arable land use), 180% (nitrogen use), 265% (phosphorus use) and 20% (ecological footprint) in 2050, if the most inefficient way of consumption is chosen and continued. To alleviate the role of agriculture in transgressing planetary boundaries, it is indispensable to comprehend how many roles of agriculture is playing and where which target should be set to framework the national agricultural policies in coherence with attaining sustainable development goals of UN by 2030.


GCB Bioenergy ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 466-482 ◽  
Author(s):  
Nicola Di Virgilio ◽  
Osvaldo Facini ◽  
Andrea Nocentini ◽  
Marianna Nardino ◽  
Federica Rossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document