A structured seabird population model reveals how alternative forage fish control rules benefit seabirds and fisheries

2021 ◽  
Author(s):  
Laura E. Koehn ◽  
Margaret C. Siple ◽  
Timothy E. Essington
2005 ◽  
Vol 10 (4) ◽  
pp. 365-381 ◽  
Author(s):  
Š. Repšys ◽  
V. Skakauskas

We present results of the numerical investigation of the homogenous Dirichlet and Neumann problems to an age-sex-structured population dynamics deterministic model taking into account random mating, female’s pregnancy, and spatial diffusion. We prove the existence of separable solutions to the non-dispersing population model and, by using the numerical experiment, corroborate their local stability.


Author(s):  
Jaya Pratha Sebastiyar ◽  
Martin Sahayaraj Joseph

Distributed joint congestion control and routing optimization has received a significant amount of attention recently. To date, however, most of the existing schemes follow a key idea called the back-pressure algorithm. Despite having many salient features, the first-order sub gradient nature of the back-pressure based schemes results in slow convergence and poor delay performance. To overcome these limitations, the present study was made as first attempt at developing a second-order joint congestion control and routing optimization framework that offers utility-optimality, queue-stability, fast convergence, and low delay.  Contributions in this project are three-fold. The present study propose a new second-order joint congestion control and routing framework based on a primal-dual interior-point approach and established utility-optimality and queue-stability of the proposed second-order method. The results of present study showed that how to implement the proposed second-order method in a distributed fashion.


Author(s):  
E. I. Kazakova ◽  
E. N. Govorukha ◽  
S. Chernovol ◽  
V. Cherepov ◽  
R. Romashov ◽  
...  

2020 ◽  
Vol 52 (4) ◽  
pp. 1127-1163
Author(s):  
Jie Yen Fan ◽  
Kais Hamza ◽  
Peter Jagers ◽  
Fima C. Klebaner

AbstractA general multi-type population model is considered, where individuals live and reproduce according to their age and type, but also under the influence of the size and composition of the entire population. We describe the dynamics of the population as a measure-valued process and obtain its asymptotics as the population grows with the environmental carrying capacity. Thus, a deterministic approximation is given, in the form of a law of large numbers, as well as a central limit theorem. This general framework is then adapted to model sexual reproduction, with a special section on serial monogamic mating systems.


Sign in / Sign up

Export Citation Format

Share Document