queue stability
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Boxiang Zhu ◽  
Jiarui Li ◽  
Zhongkai Liu ◽  
Yang Liu

Data offloading algorithm is the foundation of urban Internet of Things, which has gained attention for its large size of user engagement, low cost, and wide range of data sources, replacing traditional crowdsensing in areas such as intelligent vehicles, spectrum sensing, and environmental surveillance. In data offloading tasks, users’ location information is usually required for optimal task assignment, while some users in remote areas are unable to access base station signals, making them incapable of performing sensing tasks, and at the same time, there are serious concerns about users’ privacy leakage about their locations. Until today, location protection for task assignment in data offloading has not been well explored. In addition, existing privacy protection algorithms and data offloading task assignment mechanisms cannot provide personalized protection for different users’ privacy protection needs. To this end, we propose an algorithm known as differential private long-term privacy-preserving auction with Lyapunov stochastic theory (DP-LAL) for data offloading based on satellite-terrestrial architecture that minimizes the total payment. This not only gives an approximate optimal total payment in polynomial time but also improves the issue of poor signal in remote areas. Meanwhile, satellite-terrestrial data offloading architecture integrates wireless sensor networks and cloud computing to provide real-time data processing. What is more, we have considered long-term privacy protection goals. We employ reverse combinatorial auction and Lyapunov optimization theorem to jointly optimize queue stability and total payment. More importantly, we use Lyapunov optimization theorem to jointly optimize queue stability and total payment. We prove that our algorithm is of high efficiency in computing and has good performance in various economic attributes. For example, our algorithms are personally rational, budget-balanced, and true to the buyer and seller. We use large-scale simulations to evaluate the proposed algorithm, and compare our algorithm with existing algorithms, our algorithm shows higher efficiency and better economic properties.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1359
Author(s):  
Joohyung Jeon ◽  
Soohyun Park ◽  
Minseok Choi ◽  
Joongheon Kim ◽  
Young-Bin Kwon ◽  
...  

Federated learning-enabled edge devices train global models by sharing them while avoiding local data sharing. In federated learning, the sharing of models through communication between several clients and central servers results in various problems such as a high latency and network congestion. Moreover, battery consumption problems caused by local training procedures may impact power-hungry clients. To tackle these issues, federated edge learning (FEEL) applies the network edge technologies of mobile edge computing. In this paper, we propose a novel control algorithm for high-performance and stabilized queue in FEEL system. We consider that the FEEL environment includes the clients transmit data to associated federated edges; these edges then locally update the global model, which is downloaded from the central server via a backhaul. Obtaining greater quantities of local data from the clients facilitates more accurate global model construction; however, this may be harmful in terms of queue stability in the edge, owing to substantial data arrivals from the clients. Therefore, the proposed algorithm varies the number of clients selected for transmission, with the aim of maximizing the time-averaged federated learning accuracy subject to queue stability. Based on this number of clients, the federated edge selects the clients to transmit on the basis of resource status.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3140 ◽  
Author(s):  
Heng Zhang ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Yiqing Deng ◽  
Yutong Xiao ◽  
...  

Mobile Edge Computing (MEC) has evolved into a promising technology that can relieve computing pressure on wireless devices (WDs) in the Internet of Things (IoT) by offloading computation tasks to the MEC server. Resource management and allocation are challenging because of the unpredictability of task arrival, wireless channel status and energy consumption. To address such a challenge, in this paper, we provide an energy-efficient joint resource management and allocation (ECM-RMA) policy to reduce time-averaged energy consumption in a multi-user multi-task MEC system with hybrid energy harvested WDs. We first formulate the time-averaged energy consumption minimization problem while the MEC system satisfied both the data queue stability constraint and energy queue stability constraint. To solve the stochastic optimization problem, we turn the problem into two deterministic sub-problems, which can be easily solved by convex optimization technique and linear programming technique. Correspondingly, we propose the ECM-RMA algorithm that does not require priori knowledge of stochastic processes such as channel states, data arrivals and green energy harvesting. Most importantly, the proposed algorithm achieves the energy consumption-delay trade-off as [ O ( 1 / V ) , O ( V ) ] . V, as a non-negative weight, which can effectively control the energy consumption-delay performance. Finally, simulation results verify the correctness of the theoretical analysis and the effectiveness of the proposed algorithm.


2018 ◽  
Vol 17 (4) ◽  
pp. 2471-2485 ◽  
Author(s):  
Yitu Wang ◽  
Wei Wang ◽  
Vincent K. N. Lau ◽  
Lin Chen ◽  
Zhaoyang Zhang

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 13604-13616 ◽  
Author(s):  
Lun Tang ◽  
Xixi Yang ◽  
Xiaolin Wu ◽  
Taiping Cui ◽  
Qianbin Chen

Author(s):  
Jaya Pratha Sebastiyar ◽  
Martin Sahayaraj Joseph

Distributed joint congestion control and routing optimization has received a significant amount of attention recently. To date, however, most of the existing schemes follow a key idea called the back-pressure algorithm. Despite having many salient features, the first-order sub gradient nature of the back-pressure based schemes results in slow convergence and poor delay performance. To overcome these limitations, the present study was made as first attempt at developing a second-order joint congestion control and routing optimization framework that offers utility-optimality, queue-stability, fast convergence, and low delay.  Contributions in this project are three-fold. The present study propose a new second-order joint congestion control and routing framework based on a primal-dual interior-point approach and established utility-optimality and queue-stability of the proposed second-order method. The results of present study showed that how to implement the proposed second-order method in a distributed fashion.


2016 ◽  
Vol 65 (10) ◽  
pp. 8003-8013 ◽  
Author(s):  
Zhi Chen ◽  
Teng Joon Lim ◽  
Mehul Motani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document