scholarly journals Effect of growth temperature on photosynthetic capacity and respiration in three ecotypes of Eriophorum vaginatum

2018 ◽  
Vol 8 (7) ◽  
pp. 3711-3725 ◽  
Author(s):  
Jessica L. Schedlbauer ◽  
Ned Fetcher ◽  
Katherine Hood ◽  
Michael L. Moody ◽  
Jianwu Tang
Oecologia ◽  
2015 ◽  
Vol 177 (4) ◽  
pp. 1183-1194 ◽  
Author(s):  
Mirindi Eric Dusenge ◽  
Göran Wallin ◽  
Johanna Gårdesten ◽  
Felix Niyonzima ◽  
Lisa Adolfsson ◽  
...  

2011 ◽  
Vol 38 (1) ◽  
pp. 54 ◽  
Author(s):  
Danielle E. Medek ◽  
John R. Evans ◽  
Marcus Schortemeyer ◽  
Marilyn C. Ball

How plastic is hydraulic anatomy with growth temperature, and how does this relate to photosynthesis? These interrelationships were studied in subantarctic Poa foliosa Hook. f. and alpine Poa hothamensis Vickery grown under 7/4°C and 12/9°C day/night temperatures, reflecting summer temperatures in their respective habitats. Conduit radii were smaller in P. foliosa than in P. hothamensis, consistent with greater avoidance of freeze/thaw-induced embolism. Despite its origins in an environment with relatively little temperature variation, P. foliosa exhibited greater plasticity in hydraulic anatomy than P. hothamensis, increasing the size and density of conduits when grown under the warmer temperature regime. Both species had similar anatomical capacities for water transport when grown at 12/9°C, but stomatal conductance was lower in P. foliosa than P. hothamensis, suggesting hydraulic limitations not explained by leaf vascular anatomy. However, greater photosynthetic capacity and foliar nitrogen contents enabled P. foliosa to achieve the same assimilation rate as P. hothamensis under the 12/9°C growth conditions. Our results showed that nitrogen plays a central role in maintaining assimilation rates when constrained either by enzymatic activity at low temperatures or by hydraulic limitations at high temperatures and evaporative demands. Interspecific differences in nitrogen and water use may influence how subantarctic and alpine vegetation responds to climate warming.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 999A-999
Author(s):  
William L. Bauerle ◽  
Joseph D. Bowden ◽  
Geoff G. Wang

This study set out to test the hypothesis that the development in the capacity for the maximal rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (VCmax) and the maximum regeneration rate of ribulose-1,5-bisphosphate (Jmax) per unit mass is proportional to the growth temperature under which the leaf develops and to investigate whether the capacity for photosynthetic acclimation to temperature varies genetically within a species by testing genotypes that originated from diverse thermal environments. Acer rubrum L. (red maple) genotypes were subjected to short-term and long-term temperature alteration to investigate the photosynthetic response. We minimized the variation of within-crown light gradients by growing trees in open grown field conditions and controlled temperature on a crown section basis. Thus, we singled out the temperature acclimation affects on the photosynthetic temperature optimum. In response to temperature acclimation, the genotype from the northern United States downregulated both VCmax and Jmax and had a 5 and 3 °C lower temperature optimum than the genotype native to the southern United States. The activation energy increased and was higher for Jmax than for VCmax in both genotypes. With respect to respiration, both genotypes downregulated about 0.5 μmol·m-2·s-1. Although respiration was lower, the increased energy of activation in response to growth temperature resulted in a decrease in maximum net photosynthetic rate (Amax) under saturating light and CO2. The results illustrate that the photosynthetic capacity adjusted in response to growth temperature but the temperature optimum was different among genotypes.


Author(s):  
Alain Claverie ◽  
Zuzanna Liliental-Weber

GaAs layers grown by MBE at low temperatures (in the 200°C range, LT-GaAs) have been reported to have very interesting electronic and transport properties. Previous studies have shown that, before annealing, the crystalline quality of the layers is related to the growth temperature. Lowering the temperature or increasing the layer thickness generally results in some columnar polycrystalline growth. For the best “temperature-thickness” combinations, the layers may be very As rich (up to 1.25%) resulting in an up to 0.15% increase of the lattice parameter, consistent with the excess As. Only after annealing are the technologically important semi-insulating properties of these layers observed. When annealed in As atmosphere at about 600°C a decrease of the lattice parameter to the substrate value is observed. TEM studies show formation of precipitates which are supposed to be As related since the average As concentration remains almost unchanged upon annealing.


1991 ◽  
Vol 83 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Alan H. Teramura ◽  
Lewis H. Ziska ◽  
A. Ester Sztein

Sign in / Sign up

Export Citation Format

Share Document