Faculty Opinions recommendation of Using the rapid A-Ci response (RACiR) in the Li-Cor 6400 to measure developmental gradients of photosynthetic capacity in poplar.

Author(s):  
Jaume Flexas ◽  
Alicia Perera-Castro
1991 ◽  
Vol 83 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Alan H. Teramura ◽  
Lewis H. Ziska ◽  
A. Ester Sztein

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
Author(s):  
Holly V. Moeller ◽  
Veronica Hsu ◽  
Michelle Lepori‐Bui ◽  
Lisa Y. Mesrop ◽  
Cara Chinn ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Pedro Gómez-Vera ◽  
Héctor Blanco-Flores ◽  
Ana Marta Francisco ◽  
Jimmy Castillo ◽  
Wilmer Tezara

Summary Studies on the effect of nanofertilizers (NF) in physiological performance of plants is scarce, especially that related to substances encapsulated into silicon dioxide (SiO2) nanoparticles in cocoa plants. The effect of foliar application of SiO2-NF on nutrient contents, gas exchange, photochemical activity, photosynthetic pigments, total soluble protein (TSP), photosynthetic nitrogen use efficiency (PNUE), and growth in seedlings of two cocoa clones (OC-61 and BR-05) in a greenhouse was assessed. Spraying with SiO2-NF increased net photosynthetic rate (A) by 16 and 60% and electron transport rate (J) by 52 and 162% in clones OC-61 and BR-05, respectively, without changes in photosynthetic pigment concentration in either clone. The SiO2-NF caused a decrease of 37 and 22% in stomatal conductance in OC-61 and BR-05, respectively; a similar trend was observed in transpiration rate, causing an increase of 42 and 100% in water use efficiency in OC-61 and BR-05, respectively. In both clones, diameter of graft increased on average 28% with SiO2-NF. Higher photosynthetic capacity was related to an increase in leaf N, P, and TSP. A significant reduction in PNUE (A/N ratio) was found in OC-61, whereas in BR-05 PNUE increased after spraying with SiO2-NF. Overall, spraying with SiO2-NF had a positive effect on photosynthetic processes in both cocoa clones, associated with an increase in nutrients content, which translated into improved growth. A differential physiological response to spraying with SiO2-NF between clones was also found, with BR-05 being the clone with a better physiological response during the establishment and development stages.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Jiang ◽  
Bin Lu ◽  
Liantao Liu ◽  
Wenjing Duan ◽  
Yanjun Meng ◽  
...  

Abstract Background As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0–500 μM MT treatments with salt stress induced by treatment with 150 mM NaCl. Results Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). Conclusions Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1094
Author(s):  
Kai Yue ◽  
Lingling Li ◽  
Junhong Xie ◽  
Setor Kwami Fudjoe ◽  
Renzhi Zhang ◽  
...  

Nitrogen (N) is the most limiting nutrient for maize, and appropriate N fertilization can promote maize growth and yield. The effect of N fertilizer rates and timings on morphology, antioxidant enzymes, and grain yield of maize (Zea mays L.) in the Loess Plateau of China was evaluated. The four N levels, i.e., 0 (N0), 100 (N1), 200 (N2), and 300 (N3) kg ha−1, were applied at two timings (T1, one-third N at sowing and two-thirds at the six-leaf stage of maize; T2, one-third applied at sowing, six-leaf stage, and eleven-leaf stage of maize). The results show that N2 and N3 significantly increased the plant height, stem and leaf dry weight, and leaf area index of maize compared with a non-N-fertilized control (N0). The net photosynthetic rate, transpiration rate, stomatal conductance, and leaf chlorophyll contents were lower, while the intercellular carbon dioxide concentration was higher for non-fertilized plants compared to fertilized plants. The activities of peroxidase (POD) and superoxide dismutase (SOD) increased with N rate, but the difference between 200 and 300 kg ha−1 was not significant; further, the isozyme bands of POD and SOD also changed with their activities. Compared with a non-N-fertilized control, N2 and N3 significantly increased grain yield by 2.76- and 3.11-fold in 2018, 2.74- and 2.80-fold in 2019, and 2.71- and 2.89-fold in 2020, and there was no significant difference between N2 and N3. N application timing only affected yield in 2018. In conclusion, 200 kg N ha−1 application increased yield through optimizing the antioxidant enzyme system, increasing photosynthetic capacity, and promoting dry matter accumulation. Further research is necessary to evaluate the response of more cultivars under more seasons to validate the results obtained.


Sign in / Sign up

Export Citation Format

Share Document