scholarly journals Woodpeckers can act as dispersal vectors for fungi, plants, and microorganisms

2021 ◽  
Author(s):  
Niko R. Johansson ◽  
Ulla Kaasalainen ◽  
Jouko Rikkinen
Keyword(s):  

Author(s):  
Yves Philippe Klinger ◽  
Rolf Lutz Eckstein ◽  
Wiebke Hansen ◽  
Till Kleinebecker ◽  
Annette Otte ◽  
...  


Flora ◽  
2013 ◽  
Vol 208 (4) ◽  
pp. 259-267 ◽  
Author(s):  
Sara Muñoz-Vallés ◽  
Juan B. Gallego-Fernández ◽  
Claudia Dellafiore ◽  
Jesús Cambrollé


2011 ◽  
Vol 57 (6) ◽  
pp. 818-827 ◽  
Author(s):  
M.C. Van Riel ◽  
G. Van Der Velde ◽  
A. Bij De Vaate

Abstract Drifting can be an effective way for aquatic organisms to disperse and colonise new areas. Increasing connectivity between European large rivers facilitates invasion by drifting aquatic macroinvertebrates. The present study shows that high abundances of invasive species drift in the headstream of the river Rhine. Dikerogammarus villosus and Chelicorophium curvispinum represented up to 90% of the total of drifting macroinvertebrates. Drift activity shows seasonal and diel patterns. Most species started drifting in spring and were most abundant in the water column during the summer period. Drift activity was very low during the winter period. Diel patterns were apparent; most species, including D. villosus, drifted during the night. Drifting macroinvertebrates colonised stony substrate directly from the water column. D. villosus generally colonised the substrate at night, while higher numbers of C. curvispinum colonised the substrate during the day. It is very likely that drifting functions as a dispersal mechanism for crustacean invaders. Once waterways are connected, these species are no longer necessarily dependent on dispersal vectors other than drift for extending their distribution range.



2017 ◽  
Vol 65 (3) ◽  
pp. 270 ◽  
Author(s):  
Yoko Shimizu-Kimura ◽  
Scott Burnett ◽  
Alison Shapcott

We investigated the population ecology of Triunia robusta (C.T. White) Foreman, an endemic rainforest shrub of south-east Queensland, Australia. Two-time demographic data from 1999 and 2010 were used to estimate the species life span and changes in demographic factors over the 11 year period. The potential dispersal vectors and their activities were monitored, and the effects of predation on seed and seedling mortality were quantified. Published genetic data was used to assess the gene flow distance in years. On average, T. robusta has a life span of 103 years, with a generation time of 44 years. Larger populations (>200) increased in size since 1999, whereas smaller populations retained the same or slightly reduced numbers. Small, isolated populations in the northern distribution range showed substantially lower reproductive rates. Local rodents and marsupials were considered responsible for the majority of observed secondary seed dispersal (<10.3 m) and predation activities. Post-predation mortality was high (82%), with only 12% surviving to become seedlings. The empirical evidence of short-distance dispersal, limited gene flow, high post-predation mortality rates and relatively low reproductive rates, combined with potential absence of primary dispersers suggests that critically small and isolated populations may be highly vulnerable.



2019 ◽  
Vol 286 (1897) ◽  
pp. 20182253 ◽  
Author(s):  
Matthew W. Chmielewski ◽  
Sarah M. Eppley

Animal dispersal influences the community structure and diversity of a wide variety of plant taxa, yet the potential effects of animal dispersal in bryophytes (hornworts, liverworts, and mosses) is poorly understood. In many communities, birds use bryophyte-abundant niche space for foraging and gathering nest material, suggesting that birds may play a role in bryophyte dispersal. As highly motile animals with long migratory routes, birds potentially provide a means for both local and long-distance bryophyte dispersal in a manner that differs greatly from passive, aerial spore dispersal. To examine this phenomenon, we collected and germinated bryophyte propagules from the legs, feet and tails of 224 birds from 34 species within a temperate forest community. In total we found 1512 spores, and were able to germinate 242 bryophyte propagules. In addition, we provide evidence that topical (externally-carried) spore load varies by bird species and behaviour. Tail feather spore abundance is highest in bark and foliage gleaning species and is positively correlated with tarsal length. Together, these data suggest that a variety of forest birds exhibit the potential to act as dispersal vectors for bryophyte propagules, including an abundance of spores, and that understanding the effects of animal behaviour on bryophyte dispersal will be key to further understanding this interaction.



AoB Plants ◽  
2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Haldre S Rogers ◽  
Noelle G Beckman ◽  
Florian Hartig ◽  
Jeremy S Johnson ◽  
Gesine Pufal ◽  
...  

Abstract The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel.



2019 ◽  
Vol 30 (3) ◽  
pp. 533-541 ◽  
Author(s):  
Dirk Hattermann ◽  
Markus Bernhardt‐Römermann ◽  
Annette Otte ◽  
Rolf Lutz Eckstein


Botany ◽  
2011 ◽  
Vol 89 (2) ◽  
pp. 91-103 ◽  
Author(s):  
Caroline Dubé ◽  
Stéphanie Pellerin ◽  
Monique Poulin

Linear infrastructures are known to facilitate the spread of undesirable species in ecosystems. Compared with other types of infrastructure, the role of power line rights-of-way (ROWs) as dispersal vectors remains poorly understood, especially with regard to peatlands. The aim of our study was to evaluate their impacts on the vegetation of ombrotrophic (bog) and minerotrophic (fen) peatlands. The vegetation communities within and adjacent to power line ROWs were sampled in 23 bogs and 11 fens in southern Québec. In fens, invasive species were found in abundance along the first 250 m within ROWs, while native non-peatland species were able to spread into entire ROWs. Invasive species were also able to colonize the adjacent fen habitats but were mostly concentrated in the first 4 m from ROW edges. Some species were, however, able to establish at more than 43 m from ROWs. Invasive and native non-peatland species were mostly restricted to the first 31 m within ROWs intersecting a bog and almost none dispersed in the adjacent bog habitats. Overall, the average cover of native non-peatland and invasive species in ROWs was mostly related to intrinsic abiotic conditions such as water pH, water conductivity, and water table level, while landscape surrounding the peatland and historical variables (e.g., time elapse since the construction of the ROW) had few impacts in both bogs and fens.



2021 ◽  
Vol 9 (2) ◽  
pp. 254-264
Author(s):  
Rosana Solan ◽  
M. Raquel Piñeiro

The Splachnaceae family is a bryological component of the temperate forests of Nothofagus in the Fuegian region of Argentina. It is represented by the Tayloria genera with three species, T. dubyi (endemic), T. magellanica, T. mirabilis, and Tetraplodon, with a single specie Tetraplodon fuegianus. They grow on organic substrates of animal origin and are the only family among mosses in the area in which entomochory is observed (i.e. dispersion of spores through insects). From herbarium material, the taxonomic features of gametophytes and sporophytes which allow species to be identified are described. Spores were studied with OM and SEM. Dispersal vectors for Tayloria mirabilis and morfo-ecological adaptations associated with entomochory were observed and analyzed. Mosses are differentiated from their leaves and the morphology and color of the sporophyte capsules. The spores, similar in the studied species, are dispersed in sticky masses, they are spheroidal, monoletes, 8-13 μm of diameter with a pitted-reticulate ornamentation. The dispersing agents mostly correspond to the order Diptera. The Splachnaceae family has developed adaptive strategies in relation to substrate (coprophilous gametophytes), in striking and showy sporophytes morphologies and in a particular dispersal mode of the spores by insects. All these morpho-ecological adaptations contribute to an effective action of the dispersing agents in the muscinal biocenosis.



Sign in / Sign up

Export Citation Format

Share Document