Riparian plant species preferences indicate diversification of site conditions after river restoration

Ecohydrology ◽  
2017 ◽  
Vol 10 (5) ◽  
pp. e1852 ◽  
Author(s):  
Patrick Modrak ◽  
Stefan Brunzel ◽  
Armin W. Lorenz
2013 ◽  
Vol 85 (4) ◽  
pp. 1449-1460 ◽  
Author(s):  
MAINARA F. CASCAES ◽  
VANILDE CITADINI-ZANETTE ◽  
BIRGIT HARTER-MARQUES

Phenological studies assist in forest ecosystems comprehension and evaluation of resource availability for wildlife, as well as in improving the understanding of relationships between plants and their pollinators and dispersers. This study aims to describe the reproductive phenophases of riparian plant species and correlate them with climatic variables. The reproductive phenology was analyzed biweekly throughout one year, recording the absence or presence of flowers/fruits. The flowering phenophase occurred throughout the year, with an increase in number of species in blossom in October, November, and December. The flowering peak of the community was observed in November. The fruiting phenophase also occurred throughout the year and showed an increase of species fruiting in June with a slight decrease in August and September. The data obtained in this study, when compared with other studies in different Atlantic Rainforest areas, indicates a seasonal pattern for the flowering phenophase and a variation in fruit availability throughout the year as well as in the fruiting peaks. Therefore, studies that observe flowering and fruiting events in loco are of main importance because they provide information on reproductive seasons of species for use in environmental restoration projects and thus alleviate the situation of degradation of riparian forests.


2003 ◽  
Vol 51 (6) ◽  
pp. 667 ◽  
Author(s):  
A. J. Lymbery ◽  
R. G. Doupé ◽  
N. E. Pettit

Although the salinisation of streams has long been recognised as one of Western Australia's most serious environmental and resource problems, there is very little published information on the effects of salinisation on riparian flora and fauna. We studied riparian vegetation in three experimental catchments on the Collie River in Western Australia. The catchments are situated within a 5-km area of state forest and are geologically and botanically similar, but differ in the extent of clearing, groundwater levels and stream salinity. In each catchment, transects were taken perpendicular to the direction of streamflow, and 4-m2 quadrats taken along each transect. Within each quadrat, soil salinity was measured, all plants were identified to species level and percentage cover estimated. The catchments differed significantly in soil salinity, with salinity being greatest in the most extensively cleared catchment and increasing towards the floor of the valley. Plant-species richness, species diversity and species composition were significantly related to soil salinity, both among catchments and among quadrats within the most extensively cleared catchment. Plant-species richness and diversity decreased with increasing soil salinity, an effect that may be partly due to a decline in perennial herb and shrub species. This may have an impact on other components of the riparian ecosystem.


Author(s):  
Gwendolyn Waring

The study of the riparian plant community along the shoreline of Lake Powell offers a unique opportunity to observe the development of a plant community from a very early stage. This annual report discusses some of the results of the initial phase of this study, which was designed to describe the structure of the plant community as it occurs today and to describe preliminary results of experiments begun to assess interactions between the exotic tamarisk and native riparian plant species.


2020 ◽  
Vol 13 (5) ◽  
pp. 621-632
Author(s):  
Kelly A Steinberg ◽  
Kim D Eichhorst ◽  
Jennifer A Rudgers

Abstract Aims Determining the ecological consequences of interactions between slow changes in long-term climate means and amplified variability in climate is an important research frontier in plant ecology. We combined the recent approach of climate sensitivity functions with a revised hydrological ‘bucket model’ to improve predictions on how plant species will respond to changes in the mean and variance of groundwater resources. Methods We leveraged spatiotemporal variation in long-term datasets of riparian vegetation cover and groundwater levels to build the first groundwater sensitivity functions for common plant species of dryland riparian corridors. Our results demonstrate the value of this approach to identifying which plant species will thrive (or fail) in an increasingly variable climate layered with declining groundwater stores. Important Findings Riparian plant species differed in sensitivity to both the mean and variance in groundwater levels. Rio Grande cottonwood (Populus deltoides ssp. wislizenii) cover was predicted to decline with greater inter-annual groundwater variance, while coyote willow (Salix exigua) and other native wetland species were predicted to benefit from greater year-to-year variance. No non-native species were sensitive to groundwater variance, but patterns for Russian olive (Elaeagnus angustifolia) predict declines under deeper mean groundwater tables. Warm air temperatures modulated groundwater sensitivity for cottonwood, which was more sensitive to variability in groundwater in years/sites with warmer maximum temperatures than in cool sites/periods. Cottonwood cover declined most with greater intra-annual coefficients of variation (CV) in groundwater, but was not significantly correlated with inter-annual CV, perhaps due to the short time series (16 years) relative to cottonwood lifespan. In contrast, non-native tamarisk (Tamarix chinensis) cover increased with both intra- and inter-annual CV in groundwater. Altogether, our results predict that changes in groundwater variability and mean will affect riparian plant communities through the differential sensitivities of individual plant species to mean versus variance in groundwater stores.


Sign in / Sign up

Export Citation Format

Share Document