scholarly journals High‐severity and short‐interval wildfires limit forest recovery in the Central Cascade Range

Ecosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Sebastian U. Busby ◽  
Kevan B. Moffett ◽  
Andrés Holz
BioScience ◽  
2020 ◽  
Vol 70 (8) ◽  
pp. 659-673 ◽  
Author(s):  
Jonathan D Coop ◽  
Sean A Parks ◽  
Camille S Stevens-Rumann ◽  
Shelley D Crausbay ◽  
Philip E Higuera ◽  
...  

Abstract Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies major, extensive, and enduring changes in dominant species, life forms, or functions, with impacts on ecosystem services. In the present article, we synthesize a growing body of evidence of fire-driven conversion and our understanding of its causes across western North America. We assess our capacity to predict conversion and highlight important uncertainties. Increasing forest vulnerability to changing fire activity and climate compels shifts in management approaches, and we propose key themes for applied research coproduced by scientists and managers to support decision-making in an era when the prefire forest may not return.


2013 ◽  
Vol 43 (6) ◽  
pp. 570-583 ◽  
Author(s):  
Melissa Savage ◽  
Joy Nystrom Mast ◽  
Johannes J. Feddema

We examine regeneration dynamics across landscapes under extreme climate conditions and a human-altered fire regime in ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) forests of the American Southwest. Our research asks how well these forests recover when unprecedented conditions of a high-severity fire regime combine with historical drought conditions. Tree recruitment is documented at five sites in New Mexico after high-severity fires that burned forests in the drought that prevailed from ∼1945 to 1958. We develop a water-balance type model to evaluate how altered microclimate conditions in the years after a fire and during a drought may inhibit ponderosa pine regeneration in comparison with drought conditions alone. We empirically identify two pathways of forest recovery following high-severity fires during drought: recovery to nonforest types, either dense shrubfields or shrubs in grasslands (four sites) or recovery to hyperdense forest (one site). Model simulations predict fewer favorable opportunities for germination, fewer periods favorable for seedling establishment, shortening of favorable establishment periods, and more adverse conditions because of later spring and earlier fall hard freezes. Our research suggests that a specific climate window critical to the capacity of southwestern ponderosa pine trees to regenerate is narrowed by a synchronous occurrence of high-severity fire and drought.


2021 ◽  
Vol 69 (1) ◽  
pp. 21
Author(s):  
Heidi Zimmer ◽  
Jan Allen ◽  
Rob Smith ◽  
Rebecca Gibson ◽  
Tony Auld

Changing climate is predicted to result in increased frequency and size of wildfires in south-eastern Australia. With increasing area burnt there is increased potential for entire species distributions to be burnt in a single fire event. This is particularly the case for range-restricted threatened species. Eucalyptus canobolensis (L.A.S.Johnson & K.D.Hill) J.T.Hunter is restricted to Mount Canobolas, New South Wales, Australia. In 2018, the majority of the E. canobolensis population was burnt by wildfire. One-year post-fire, we measured recruitment, resprouting and mortality of E. canobolensis. At higher fire severities, smaller trees were more likely to resprout from their bases only, as their stems were killed (i.e. ‘top kill’). Seedling regeneration only occurred in burnt plots. Our study demonstrates that E. canobolensis has a fire response typical of many eucalypts, characterised by seedling recruitment and larger trees resprouting epicormically, even after high-severity fire. Nevertheless, E. canobolensis response to repeat and short-interval fire remains unknown, and smaller trees appear to be vulnerable to top kill. Although much of Australia’s flora can respond to fire, this response is likely to be challenged as fire extents increase, especially if this is combined with increasing fire severity and/or frequency. These changes to the fire regime are a particular threat to species with restricted distributions.


Ecology ◽  
2020 ◽  
Author(s):  
Nathan S. Gill ◽  
Tyler J. Hoecker ◽  
Monica G. Turner
Keyword(s):  

2009 ◽  
Vol 97 (1) ◽  
pp. 142-154 ◽  
Author(s):  
Daniel C. Donato ◽  
Joseph B. Fontaine ◽  
W. Douglas Robinson ◽  
J. Boone Kauffman ◽  
Beverly E. Law

2020 ◽  
Vol 50 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Millen McCord ◽  
Matthew J. Reilly ◽  
Ramona J. Butz ◽  
Erik S. Jules

We compared early seral development between stands subject to single and repeated high-severity wildfire in low-elevation, mixed conifer – hardwood forests in the Klamath Mountains, California, USA. We used a before–after, control–impact (BACI) approach to assess changes in the density of conifer regeneration and the cover of multiple components of vegetation structure (conifers, hardwoods, shrubs, forbs, and graminoids) and compare pathways of seral development between plots that burned once and plots that burned twice. Fifty-three field plots were established 6 years following a high-severity fire in 2004. Nineteen of these plots experienced a second high-severity wildfire 11 years later (2015), and all plots were remeasured in 2016–2017. Conifer regeneration was abundant following the first fire but was greatly reduced by the second fire. Plots that did not reburn increased in conifer, hardwood, and shrub cover, whereas plots that reburned increased in forb cover and decreased in shrub, hardwood, and conifer cover. Despite conifer loss, we found little evidence of shifts to nonforested states following repeated fire due to resilience of resprouting hardwoods. Our results indicate that repeated high-severity fire has the potential to protract early seral development and catalyze transitions from mixed conifer – hardwood forest to hardwood-dominated early seral conditions.


1990 ◽  
Vol 78 (1) ◽  
pp. 1-1
Author(s):  
M. J. Brown

From this issue, Clinical Science will increase its page numbers from an average of 112 to 128 per monthly issue. This welcome change — equivalent to at least two manuscripts — has been ‘forced’ on us by the increasing pressure on space; this has led to an undesirable increase in the delay between acceptance and publication, and to a fall in the proportion of submitted manuscripts we have been able to accept. The change in page numbers will instead permit us now to return to our exceptionally short interval between acceptance and publication of 3–4 months; and at the same time we shall be able not only to accept (as now) those papers requiring little or no revision, but also to offer hope to some of those papers which have raised our interest but come to grief in review because of a major but remediable problem. Our view, doubtless unoriginal, has been that the review process, which is unusually thorough for Clinical Science, involving a specialist editor and two external referees, is most constructive when it helps the evolution of a good paper from an interesting piece of research. Traditionally, the papers in Clinical Science have represented some areas of research more than others. However, this has reflected entirely the pattern of papers submitted to us, rather than any selective interest of the Editorial Board, which numbers up to 35 scientists covering most areas of medical research. Arguably, after the explosion during the last decade of specialist journals, the general journal can look forward to a renaissance in the 1990s, as scientists in apparently different specialities discover that they are interested in the same substances, asking similar questions and developing techniques of mutual benefit to answer these questions. This situation arises from the trend, even among clinical scientists, to recognize the power of research based at the cellular and molecular level to achieve real progress, and at this level the concept of organ-based specialism breaks down. It is perhaps ironic that this journal, for a short while at the end of the 1970s, adopted — and then discarded — the name of Clinical Science and Molecular Medicine, since this title perfectly represents the direction in which clinical science, and therefore Clinical Science, is now progressing.


Sign in / Sign up

Export Citation Format

Share Document