gp49B1 suppresses stem cell factor-induced mast cell activation-secretion and attendant inflammation in vivo

2003 ◽  
Vol 33 (8) ◽  
pp. 2262-2268 ◽  
Author(s):  
Anna M. Feldweg ◽  
Daniel S. Friend ◽  
Joseph S. Zhou ◽  
Yoshihide Kanaoka ◽  
Massoud Daheshia ◽  
...  
1992 ◽  
Vol 175 (1) ◽  
pp. 245-255 ◽  
Author(s):  
B K Wershil ◽  
M Tsai ◽  
E N Geissler ◽  
K M Zsebo ◽  
S J Galli

Interactions between products of the mouse W locus, which encodes the c-kit tyrosine kinase receptor, and the Sl locus, which encodes a ligand for c-kit receptor, which we have designated stem cell factor (SCF), have a critical role in the development of mast cells. Mice homozygous for mutations at either locus exhibit several phenotypic abnormalities including a virtual absence of mast cells. Moreover, the c-kit ligand SCF can induce the proliferation and maturation of normal mast cells in vitro or in vivo, and also can result in repair of the mast cell deficiency of Sl/Sld mice in vivo. We now report that administration of SCF intradermally in vivo results in dermal mast cell activation and a mast cell-dependent acute inflammatory response. This effect is c-kit receptor dependent, in that it is not observed when SCF is administered to mice containing dermal mast cells expressing functionally inactive c-kit receptors, is observed with both glycosylated and nonglycosylated forms of SCF, and occurs at doses of SCF at least 10-fold lower on a molar basis than the minimally effective dose of the classical dermal mast cell-activating agent substance P. These findings represent the first demonstration in vivo that a c-kit ligand can result in the functional activation of any cellular lineage expressing the c-kit receptor, and suggest that interactions between the c-kit receptor and its ligand may influence mast cell biology through complex effects on proliferation, maturation, and function.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Eri Takematsu ◽  
Sanjana Srinath ◽  
Michael Sherman ◽  
Andrew K Dunn ◽  
Aaron Baker

Introduction: The current standard cares for peripheral artery disease (PAD) include surgical revascularizations with bypass grafting or percutaneous interventions. However, these interventions cannot be performed in a significant portion of patients, and many do not respond to these surgical procedures. Protein therapy to stimulate the body to create new vasculature is another alternative, which is minimally invasive to patients. Stem cell factor (SCF) is a candidate protein for treating PAD, but clinical use of SCF has been limited due to toxicity related to mast cell activation. SCF also exists in a transmembrane form (tmSCF), possessing differential activities from soluble SCF and has not been explored as a therapeutic agent. Results: To develop tmSCF as a therapeutic we created tmSCF embedded in liposome or lipid nanodisc (Fig. A) . Hindlimb ischemia model on WT and ob/ob mice showed that tmSCF proteliposome (tmSCFPL) and nanodisc (tmSCFND) improved blood flow recovery significantly more than control (Fig. B, C) . Mouse model of anaphylaxis revealed that tmSCF-based therapies did not activate mast cells (Fig. D, E) . Colocalization assay of c-Kit and clathrin/caveolin revealed that mast cells preferentially use clathrin-mediated pathways to internalize SCF and caveolin-mediated pathways for tmSCF-based therapies (Fig. F, G) . Surface c-Kit internalization study on mast cells showed faster uptake of SCF in comparison to tmSCF-based therapies (Fig. H) . Previous study indicates that clathrin-mediated internalization causes increased activation of mast cells. Our studies together with the previous finding suggest that mast cell activation does not occur for tmSCF-based therapies because of the slower uptake, greater utilization of the caveolin internalization pathway and weaker activation of mast cells. Conclusions: TmSCF-based therapies can provide therapeutic benefits without off-target effects on mast cells by tuning activation with nanocarriers.


2012 ◽  
Vol 188 (11) ◽  
pp. 5428-5437 ◽  
Author(s):  
Tomonobu Ito ◽  
Daniel Smrž ◽  
Mi-Yeon Jung ◽  
Geethani Bandara ◽  
Avanti Desai ◽  
...  

2020 ◽  
Author(s):  
Eri Takematsu ◽  
Jeff Auster ◽  
Po-Chih Chen ◽  
Sanjana Srinath ◽  
Sophia Canga ◽  
...  

AbstractStem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.


2013 ◽  
Vol 191 (12) ◽  
pp. 5885-5894 ◽  
Author(s):  
Zhengli Wu ◽  
Yanhong Li ◽  
Adam J. MacNeil ◽  
Robert D. Junkins ◽  
Jason N. Berman ◽  
...  

1999 ◽  
Vol 86 (1) ◽  
pp. 202-210 ◽  
Author(s):  
N. Noviski ◽  
J. P. Brewer ◽  
W. A. Skornik ◽  
S. J. Galli ◽  
J. M. Drazen ◽  
...  

Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1- kitW/ kitW-v( kitW/ kitW-v) mice and the congenic normal WBB6F1(+/+) mice to air or to 1 or 3 parts/million O3for 4 h and studied them at different intervals from 4 to 72 h later. We found evidence of O3-induced cutaneous, as well as bronchial, mast cell degranulation. Polymorphonuclear cell influx into the pulmonary parenchyma was observed after exposure to 1 part/milllion O3only in mice that possessed mast cells. Airway hyperresponsiveness to intravenous methacholine measured in vivo under pentobarbital anesthesia was observed in both kitW/ kitW-vand +/+ mice after exposure to O3. Thus, although mast cells are activated in vivo by O3and participate in O3-induced polymorphonuclear cell infiltration into the pulmonary parenchyma, they do not participate detectably in the development of O3-induced airway hyperresponsiveness in mice.


2001 ◽  
Vol 194 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Massoud Daheshia ◽  
Daniel S. Friend ◽  
Michael J. Grusby ◽  
K. Frank Austen ◽  
Howard R. Katz

gp49B1 is an immunoglobulin (Ig) superfamily member that inhibits FcεRI-induced mast cell activation when the two receptors are coligated with antibodies in vitro. The critical question of in vivo function of gp49B1 is now addressed in gene-disrupted mice. gp49B1-deficient mice exhibited a significantly increased sensitivity to IgE-dependent passive cutaneous anaphylaxis as assessed by greater tissue swelling and mast cell degranulation in situ. Importantly, by the same criteria, the absence of gp49B1 also resulted in a lower threshold for antigen challenge in active cutaneous anaphylaxis, in which the antigen-specific antibody levels were comparable in gp49B1-deficient and sufficient mice. Moreover, the absence of gp49B1 resulted in a significantly greater and faster death rate in active systemic anaphylaxis. These results indicate that gp49B1 innately dampens adaptive immediate hypersensitivity responses by suppressing mast cell activation in vivo. In addition, this study provides a new concept and target for regulation of allergic disease susceptibility and severity.


1997 ◽  
Vol 185 (4) ◽  
pp. 663-672 ◽  
Author(s):  
Masao Yamaguchi ◽  
Chris S. Lantz ◽  
Hans C. Oettgen ◽  
Ildy M. Katona ◽  
Tony Fleming ◽  
...  

The binding of immunoglobulin E (IgE) to high affinity IgE receptors (FcεRI) expressed on the surface of mast cells primes these cells to secrete, upon subsequent exposure to specific antigen, a panel of proinflammatory mediators, which includes cytokines that can also have immunoregulatory activities. This IgE- and antigen-specific mast cell activation and mediator production is thought to be critical to the pathogenesis of allergic disorders, such as anaphylaxis and asthma, and also contributes to host defense against parasites. We now report that exposure to IgE results in a striking (up to 32-fold) upregulation of surface expression of FcεRI on mouse mast cells in vitro or in vivo. Moreover, baseline levels of FcεRI expression on peritoneal mast cells from genetically IgE-deficient (IgE −/−) mice are dramatically reduced (by ∼83%) compared with those on cells from the corresponding normal mice. In vitro studies indicate that the IgE-dependent upregulation of mouse mast cell FcεRI expression has two components: an early cycloheximide-insensitive phase, followed by a later and more sustained component that is highly sensitive to inhibition by cycloheximide. In turn, IgE-dependent upregulation of FcεRI expression significantly enhances the ability of mouse mast cells to release serotonin, interleukin-6 (IL-6), and IL-4 in response to challenge with IgE and specific antigen. The demonstration that IgE-dependent enhancement of mast cell FcεRI expression permits mast cells to respond to antigen challenge with increased production of proinflammatory and immunoregulatory mediators provides new insights into both the pathogenesis of allergic diseases and the regulation of protective host responses to parasites.


1996 ◽  
Vol 183 (6) ◽  
pp. 2681-2686 ◽  
Author(s):  
J J Costa ◽  
G D Demetri ◽  
T J Harrist ◽  
A M Dvorak ◽  
D F Hayes ◽  
...  

Stem cell factor (SCF), also known as mast cell growth factor, kit ligand, and steel factor, is the ligand for the tyrosine kinase receptor (SCFR) that is encoded by the c-kit proto-oncogene. We analyzed the effects of recombinant human SCF (r-hSCF, 5-50 micrograms/kg/day, injected subcutaneously) on mast cells and melanocytes in a phase I study of 10 patients with advanced breast carcinoma. A wheal and flare reaction developed at each r-hSCF injection site; by electron microscopy, most dermal mast cells at these sites exhibited extensive, anaphylactic-type degranulation. A 14-d course of r-hSCF significantly increased dermal mast cell density at sites distant to those injected with the cytokine and also increased both urinary levels of the major histamine metabolite, methyl-histamine, and serum levels of mast cell alpha-tryptase. Five subjects developed areas of persistent hyperpigmentation at r-hSCF injection sites; by light microscopy, these sites exhibited markedly increased epidermal melanization and increased numbers of melanocytes. The demonstration that r-hSCF can promote both the hyperplasia and the functional activation of human mast cells and melanocytes in vivo has implications for our understanding of the role of endogenous SCF in health and disease. These findings also indicate that the interaction between SCF and its receptor represents a potential therapeutic target for regulating the numbers and functional activity of both mast cells and cutaneous melanocytes.


Sign in / Sign up

Export Citation Format

Share Document