Metallo-Controlled Dynamic Molecular Tweezers: Design, Synthesis, and Self-Assembly by Metal-Ion Coordination

2010 ◽  
Vol 2010 (13) ◽  
pp. 1913-1928 ◽  
Author(s):  
Sébastien Ulrich ◽  
Anne Petitjean ◽  
Jean-Marie Lehn
2014 ◽  
Vol 2014 ◽  
pp. 1-30 ◽  
Author(s):  
Ashu Chaudhary ◽  
Ekta Rawat

To aid in knowledge of macrocyclic complexes and biomedical scientists, we are presenting here a review article with compilation of work done so far along in relation to macrocyclic ligands and their metal complexes. The metal ion chemistry of macrocyclic ligands has now become a major subdivision of coordination chemistry. This overview focuses on developments in design, synthesis, and self-assembly of metal-based architectures and ligands related to macrocyclic chemistry.


2002 ◽  
Vol 724 ◽  
Author(s):  
Elizabeth R. Wright ◽  
R. Andrew McMillan ◽  
Alan Cooper ◽  
Robert P. Apkarian ◽  
Vincent P. Conticello

AbstractTriblock copolymers have traditionally been synthesized with conventional organic components. However, triblock copolymers could be synthesized by the incorporation of two incompatible protein-based polymers. The polypeptides would differ in their hydrophobicity and confer unique physiochemical properties to the resultant materials. One protein-based polymer, based on a sequence of native elastin, that has been utilized in the synthesis of biomaterials is poly (Valine-Proline-Glycine-ValineGlycine) or poly(VPGVG) [1]. This polypeptide has been shown to have an inverse temperature transition that can be adjusted by non-conservative amino acid substitutions in the fourth position [2]. By combining polypeptide blocks with different inverse temperature transition values due to hydrophobicity differences, we expect to produce amphiphilic polypeptides capable of self-assembly into hydrogels. Our research examines the design, synthesis and characterization of elastin-mimetic block copolymers as functional biomaterials. The methods that are used for the characterization include variable temperature 1D and 2D High-Resolution-NMR, cryo-High Resolutions Scanning Electron Microscopy and Differential Scanning Calorimetry.


2015 ◽  
Vol 51 (16) ◽  
pp. 3415-3418 ◽  
Author(s):  
Annike Weißenstein ◽  
Frank Würthner

Barium ion (Ba2+) templated self-assembly of perylene bisimide (PBI) functionalized with 15-crown-5 receptors leads selectively to dimer species.


2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.


2018 ◽  
Vol 57 (7) ◽  
pp. 3913-3919 ◽  
Author(s):  
Shin-ichiro Kawano ◽  
Takafumi Murai ◽  
Takahiro Harada ◽  
Kentaro Tanaka

2015 ◽  
Vol 54 (6) ◽  
pp. 2512-2521 ◽  
Author(s):  
Gustavo González-Riopedre ◽  
Manuel R. Bermejo ◽  
M. Isabel Fernández-García ◽  
Ana M. González-Noya ◽  
Rosa Pedrido ◽  
...  

Author(s):  
Ruben D. Parra ◽  
Álvaro Castillo

The geometries and energetics of molecular self-assembly structures that contain a sequential network of cyclic halogen-bonding interactions are investigated theoretically. The strength of the halogen-bonding interactions is assessed by examining binding energies, electron charge transfer (NBO analysis) and electron density at halogen-bond critical points (AIM theory). Specifically, structural motifs having intramolecular N—X...N (X= Cl, Br, or I) interactions and the ability to drive molecular self-assemblyviathe same type of interactions are used to construct larger self-assemblies of up to three unit motifs. N—X...N halogen-bond cooperativity as a function of the self-assembly size, and the nature of the halogen atom is also examined. The cyclic network of the halogen-bonding interactions provides a suitable cavity rich in electron density (from the halogen atom lone pairs not involved in the halogen bonds) that can potentially bind an electron-deficient species such as a metal ion. This possibility is explored by examining the ability of the N—X...N network to bind Na+. Likewise, molecular self-assembly structures driven by the weaker C—X...N halogen-bonding interactions are investigated and the results compared with those of their N—X...N counterparts.


Author(s):  
Lise Schoonen ◽  
Mark B. van Eldijk ◽  
Jan C. M. van Hest
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document