Epoxidation and hydroxlation of rubber seed oil: one-pot multi-step reactions

2005 ◽  
Vol 107 (5) ◽  
pp. 330-336 ◽  
Author(s):  
Felix E. Okieimen ◽  
C. Pavithran ◽  
Isiaka O. Bakare
Keyword(s):  
Seed Oil ◽  
One Pot ◽  
2020 ◽  
Vol 45 (5) ◽  
Author(s):  
G.O . Madojemu ◽  
E.A. Elimian ◽  
M.C. Ejimadu ◽  
C.O. Okieimen ◽  
F.E. Okieimen

Biolubricant base stock was synthesized in this work from rubber seed oil in a one-pot-two-step process of epoxidation and hydroxylation. Rubber seed oil was extracted using a Soxhlet apparatus. The in situ epoxidation of the rubber seed oil with peracid (hydrogen peroxide and acetic acid) was analysed and optimized considering three process variables with their range of values given as temperature of 35-50 , time of 60-180 mins and mole ratio of hydrogen peroxide to acetic acid of 1:0.25-1:1 by applying the central composite design of response surface methodology. The ring opening reaction (hydroxylation) of the epoxide to polyhydroxylated oil (lubricant basestock) with ethanol was carried out using the optimum conditions obtained from the epoxidation process. The rubber seed oil, epoxide and lubricant basestock were characterized in terms of physico-chemical properties using standard methods and in terms of functional groups using Fourier Transform Infrared (FTIR) spectroscopy. Maximum epoxide content of 4.85% and maximum conversion of 71% of rubber seed oil to epoxide was achieved at a temperature of 50􀀀 , reaction time of 180 mins and 1: 0.39 mol/mol of hydrogen peroxide to acetic acid. The predicted values of the epoxidation process reasonably agreed with the experimental ones and model R-squared value of about 95% showed that response surface method can reasonably predict the epoxidation process using a quadratic polynomial model. There was 75% conversion of the epoxide to polyhydroxylated oil (biolubricant basestock), which represents a very high yield. The formation of epoxides and polyhydroxylated oil lead to modification (improvement) in the properties of rubber seed oil as confirmed by the physico-chemical properties and FTIR spectra analysis of the oil, epoxide and lubricant basestock. The study showed that chemical derivatives of rubber seed oils are an attractive, renewable, and ecofriendly alternative to mineral oils for lubricant formulations.


2018 ◽  
Author(s):  
Jilse Sebastian ◽  
Vishnu Vardhan Reddy Mugi ◽  
C. Muraleedharan ◽  
Santhiagu A
Keyword(s):  
Seed Oil ◽  

Author(s):  
Vishal V Patil ◽  
Ranjit S Patil

In this study, different characteristics of sustainable renewable biodiesels (those have a high potential of their production worldwide and in India) were compared with the characteristics of neat diesel to determine optimistic biodiesel for the diesel engine at 250 bar spray pressure. Optimistic fuel gives a comparatively lower level of emissions and better performance than other selected fuels in the study. Rubber seed oil methyl ester was investigated as an optimistic fuel among the other selected fuels such as sunflower oil methyl ester, neem seed oil methyl ester, and neat diesel. To enhance the performance characteristics and to further decrease the level of emission characteristics of fuel ROME, further experiments were conducted at higher spray (injection) pressures of 500 bar, 625 bar, and 750 bar with varying ignition delay period via varying its spray timings such as 8°, 13°, 18°, 23°, 28°, and 33° before top dead center. Spray pressure 250 bar at 23° before top dead center was investigated as an optimistic operating condition where fuel rubber seed oil methyl ester gives negligible hydrocarbon emissions (0.019 g/kW h) while its nitrogen oxide (NOX) emissions were about 70% lesser than those observed with neat diesel, respectively.


2016 ◽  
Vol 66 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Jian Hong ◽  
Xiao-Qin Yang ◽  
Xianmei Wan ◽  
Zhifeng Zheng ◽  
Zoran S Petrović
Keyword(s):  
Seed Oil ◽  

2017 ◽  
Author(s):  
Tan Viet Tran ◽  
Minh Tri Phung

Author(s):  
Elena Gotlib ◽  
Elena Cherezova ◽  
Anh Nguyen Thi Lan ◽  
Alla Sokolova

2019 ◽  
Vol 12 (8) ◽  
pp. 2028-2036 ◽  
Author(s):  
Chanatip Samart ◽  
Surachai Karnjanakom ◽  
Chaiyan Chaiya ◽  
Prasert Reubroycharoen ◽  
Ruengwit Sawangkeaw ◽  
...  

2016 ◽  
Vol 13 (7) ◽  
pp. 720-729 ◽  
Author(s):  
Tho Dinh Son Van ◽  
Nghia Phan Trung ◽  
Vu Nguyen Anh ◽  
Huong Nguyen Lan ◽  
Anh To Kim

Sign in / Sign up

Export Citation Format

Share Document