Optimization of esterification of fatty acid rubber seed oil for methyl ester synthesis in a plug flow reactor

2016 ◽  
Vol 13 (7) ◽  
pp. 720-729 ◽  
Author(s):  
Tho Dinh Son Van ◽  
Nghia Phan Trung ◽  
Vu Nguyen Anh ◽  
Huong Nguyen Lan ◽  
Anh To Kim
2015 ◽  
Vol 29 (8) ◽  
pp. 5136-5144 ◽  
Author(s):  
Ali S. Reshad ◽  
Prasenjit Barman ◽  
Ashish J. Chaudhari ◽  
Pankaj Tiwari ◽  
Vinayak Kulkarni ◽  
...  

Author(s):  
Achanai Buasri ◽  
Vorrada Loryuenyong

The goal of this research was to test barium chloride (BaCl2) impregnated calcined razor clam shell as a solid catalyst for transesterification of rubber seed oil (RSO) in a packed bed reactor (PBR). The waste razor clam shells were crushed, ground, and calcined at 900 °C in a furnace for 2 h to derive calcium oxide (CaO) particles. Subsequently, the calcined shells were impregnated with BaCl2 by wet impregnation method and recalcined at 300 °C for 2 h. The synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS),  Brunauer-Emmett-Teller (BET) surface area, and basic strength measurements. The effects of various parameters such as residence time, reaction temperature, methanol/oil molar ratio, and catalyst bed length on the yield of fatty acid methyl ester (FAME) were determined. The BaCl2/CaO catalyst exhibited much higher catalytic activity and stability than CaO catalyst influenced by the basicity of the doped catalyst. The maximum fatty acid methyl ester yield was 98.7 % under optimum conditions (residence time 2.0 h, reaction temperature 60 °C, methanol/oil molar ratio 12:1, and catalyst bed length 200 mm). After 6 consecutive reactions without any treatment, fatty acid methyl ester yield reduced to 83.1 %. The option of using waste razor clam shell for the production of transesterification catalysts could have economic benefits to the aquaculture and food industries. Copyright © 2018 BCREC Group. All rights reserved.Received: 4th October 2017; Revised: 22nd January 2018; Accepted: 25th January 2018; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Buasri, A., Loryuenyong, V. (2018). Continuous Production of Biodiesel from Rubber Seed Oil Using a Packed Bed Reactor with BaCl2 Impregnated CaO as Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 320-330 (doi:10.9767/bcrec.13.2.1585.320-330) 


Author(s):  
Vishal V Patil ◽  
Ranjit S Patil

In this study, different characteristics of sustainable renewable biodiesels (those have a high potential of their production worldwide and in India) were compared with the characteristics of neat diesel to determine optimistic biodiesel for the diesel engine at 250 bar spray pressure. Optimistic fuel gives a comparatively lower level of emissions and better performance than other selected fuels in the study. Rubber seed oil methyl ester was investigated as an optimistic fuel among the other selected fuels such as sunflower oil methyl ester, neem seed oil methyl ester, and neat diesel. To enhance the performance characteristics and to further decrease the level of emission characteristics of fuel ROME, further experiments were conducted at higher spray (injection) pressures of 500 bar, 625 bar, and 750 bar with varying ignition delay period via varying its spray timings such as 8°, 13°, 18°, 23°, 28°, and 33° before top dead center. Spray pressure 250 bar at 23° before top dead center was investigated as an optimistic operating condition where fuel rubber seed oil methyl ester gives negligible hydrocarbon emissions (0.019 g/kW h) while its nitrogen oxide (NOX) emissions were about 70% lesser than those observed with neat diesel, respectively.


Fuel ◽  
2014 ◽  
Vol 120 ◽  
pp. 195-201 ◽  
Author(s):  
Huei Ruey Ong ◽  
Maksudur R. Khan ◽  
M.N.K. Chowdhury ◽  
Abu Yousuf ◽  
Chin Kui Cheng

2014 ◽  
Vol 625 ◽  
pp. 897-900 ◽  
Author(s):  
Junaid Ahmad ◽  
Suzana Yusup ◽  
Awais Bokhari ◽  
Ruzaimah Nik Mohammad Kamil

Energy crises, depletion of fossil fuel reservoirs, environmental pollution, global warming, green house effect and starvation are becoming very serious problems in the modern world. Biodiesel is a liquid fuel which can be the best alternative for the fossil fuels. In this study, non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content (45%) was used for the production of biodiesel. The process comprises of two steps, in the first step acid esterification was used to reduce the FFA and in the second step base transesterification was employed to convert the treated oil into rubber seed oil methyl esters (RSOMEs). The conversion yield of biodiesel was analyzed using gas chromatography. The fuel properties were tested using the standard procedure of ASTM D6751 and EN14214. All the properties were within the ranges of the biodiesel standards. The result shows that rubber seed oil is a potential non-edible source for biodiesel production.


2015 ◽  
Vol 41 (7) ◽  
pp. 2515-2526 ◽  
Author(s):  
Lai Fatt Chuah ◽  
Awais Bokhari ◽  
Suzana Yusup ◽  
Jiří Jaromír Klemeš ◽  
Bawadi Abdullah ◽  
...  

2018 ◽  
Vol 41 (5) ◽  
pp. 1013-1018 ◽  
Author(s):  
Hanh Ngoc Thi Le ◽  
Kiyoshi Imamura ◽  
Norie Watanabe ◽  
Masakazu Furuta ◽  
Norimichi Takenaka ◽  
...  

Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 1 ◽  
Author(s):  
N. K. D. Astuti ◽  
I N. Simpen ◽  
I W. Suarsa

The CaO heterogeneous catalysts can be prepared by CaCO3 calcination process, with one source of CaCO3 being a crab shell from seafood waste. The preparation of the heterogeneous catalyst was successfully carried out by modification with KOH using a wet impregnation method at 800oC for 5 hours. The purpose of this research is to determine the physical and chemical characteristics of heterogeneous catalyst of K2O-modified crab shell and to examine the heterogeneous catalyst of K2O-modified shells in converting rubber seed oil into biodiesel. The results showed that the lowest basic alkalinity possessed without modified catalyst (1.0428 mmol g-1) and the highest alkali possessed potassium-modified catalyst (1.8314 mmol g-1). Characterization of specific surface area of ??crab shells without and with modified K2O were relatively the same. The surface morphology of the catalyst without and K2O modified was uniform. The catalyst examination results for conversion of rubber seed oil (Hevea brasiliensis) to biodiesel, the optimum catalyst concentration of 3% and the molar ratio of oil:methanol of 1:9 capable converting to biodiesel with the yield of 91.05%. The content of biodiesel were stearic methyl ester, linoleic methyl ester, linolenic methyl ester, and palmitic methyl ester.


Sign in / Sign up

Export Citation Format

Share Document