scholarly journals Induction of oxidative stress by bisphenol A and its pleiotropic effects

2017 ◽  
Vol 58 (2) ◽  
pp. 60-71 ◽  
Author(s):  
Natalie R. Gassman
Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 572
Author(s):  
Jung-Yeon Kim ◽  
Jungmin Jo ◽  
Jaechan Leem ◽  
Kwan-Kyu Park

Cisplatin is an effective chemotherapeutic agent, but its clinical use is frequently limited by its nephrotoxicity. The pathogenesis of cisplatin-induced acute kidney injury (AKI) remains incompletely understood, but oxidative stress, tubular cell death, and inflammation are considered important contributors to cisplatin-induced renal injury. Kahweol is a natural diterpene extracted from coffee beans and has been shown to possess anti-oxidative and anti-inflammatory properties. However, its role in cisplatin-induced nephrotoxicity remains undetermined. Therefore, we investigated whether kahweol exerts a protective effect against cisplatin-induced renal injury. Additionally, its mechanisms were also examined. Administration of kahweol attenuated renal dysfunction and histopathological damage together with inhibition of oxidative stress in cisplatin-injected mice. Increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and decreased expression of manganese superoxide dismutase and catalase after cisplatin treatment were significantly reversed by kahweol. Moreover, kahweol inhibited cisplatin-induced apoptosis and necroptosis in the kidneys. Finally, kahweol reduced inflammatory cytokine production and immune cell accumulation together with suppression of nuclear factor kappa-B pathway and downregulation of vascular adhesion molecules. Together, these results suggest that kahweol ameliorates cisplatin-induced renal injury via its pleiotropic effects and might be a potential preventive option against cisplatin-induced nephrotoxicity.


Author(s):  
Sophia Letsiou ◽  
Aggeliki Karamaouna ◽  
Ioannis Ganopoulos ◽  
Aliki Kapazoglou ◽  
Aliki Xanthopoulou ◽  
...  

Toxin Reviews ◽  
2021 ◽  
pp. 1-10
Author(s):  
Gulnaz Afzal ◽  
Hafiz Ishfaq Ahmad ◽  
Adil Jamal ◽  
Ghulam Mustafa ◽  
Shumaila Kiran ◽  
...  

Author(s):  
Alessandro Federico ◽  
Marcello Dallio ◽  
Antonietta Gerarda Gravina ◽  
Nadia Diano ◽  
Sonia Errico ◽  
...  

Introduction: Bisphenol A (BPA) exposure has been correlated to non-alcoholic fatty liver disease (NAFLD) development and progression. We investigated, in a clinical model, the effects of the administration of 303 mg of silybin phospholipids complex, 10 μg of vitamin D, and 15 mg of vitamin E (RealSIL, 100D, IBI-Lorenzini, Aprilia, Italy) in male NAFLD patients exposed to BPA on metabolic, hormonal, and oxidative stress-related parameters. Methods: We enrolled 32 male patients with histologic diagnosis of NAFLD and treated them with Realsil 100D twice a day for six months. We performed at baseline clinical, biochemical, and food consumption assessments as well as the evaluation of physical exercise, thiobarbituric acid reactive substances (TBARS), plasmatic and urinary BPA and estrogen levels. The results obtained were compared with those of healthy control subjects and, in the NAFLD group, between baseline and the end of treatment. Results: A direct proportionality between TBARS levels and BPA exposure was shown (p < 0.0001). The therapy determined a reduction of TBARS levels (p = 0.011), an improvement of alanine aminotransferase, aspartate aminotransferase, insulinemia, homeostatic model assessment insulin resistance, C reactive protein, tumor necrosis factor alpha (p < 0.05), an increase of conjugated BPA urine amount, and a reduction of its free form (p < 0.0001; p = 0.0002). Moreover, the therapy caused an increase of plasmatic levels of the native form of estrogens (p = 0.03). Conclusions: We highlighted the potential role of BPA in estrogen oxidation and oxidative stress in NAFLD patients. The use of Realsil 100D could contribute to fast BPA detoxification and to improve cellular antioxidant power, defending the integrity of biological estrogen-dependent pathways.


Chemosphere ◽  
2019 ◽  
Vol 234 ◽  
pp. 682-689 ◽  
Author(s):  
Jianqin Yuan ◽  
Yanbiao Kong ◽  
Mohammad Mehdi Ommati ◽  
Zhongwei Tang ◽  
Hong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document