Misfire detection of homogeneous charge compression ignition engines using matter‐element extension theory and thermodynamic multi zone model

2020 ◽  
Vol 39 (5) ◽  
Author(s):  
Mohsen Asghari ◽  
Rahim Khoshbakhti Saray ◽  
Elaheh Neshat
2013 ◽  
Vol 14 (5) ◽  
pp. 416-433 ◽  
Author(s):  
Janardhan Kodavasal ◽  
Matthew J McNenly ◽  
Aristotelis Babajimopoulos ◽  
Salvador M Aceves ◽  
Dennis N Assanis ◽  
...  

Author(s):  
Francisco Posada ◽  
Nigel N. Clark ◽  
Aleksandr Kozlov ◽  
Martin Linck ◽  
Dmitri Boulanov ◽  
...  

Homogeneous Charge Compression Ignition (HCCI) offers benefits of high efficiency with low emissions, but suffers load range limitations and control issues. A method to improve control of HCCI was numerically investigated based on two separate fuel streams with different autoignition characteristics to regulate timing and heat release at specific operational conditions. In this numerical study n-heptane was selected as the primary fuel, and the secondary fuel was defined as a reformed product of n-heptane (RG). The reformed fuel species composition was experimentally determined based on steam/n-heptane reforming process at a steam/carbon mole ratio of 2:1. In addition to H2 and CO, the reformed fuel stream was composed of CH4, CO2, H2O and non-reformed n-heptane. A single zone model using a detailed chemical kinetic mechanism was implemented on CHEMKIN to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition at total n-heptane conversion (stoichiometric) and also at the composition corresponding to a specific set of operational reforming temperatures. The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used.


2017 ◽  
Author(s):  
Zachary M. Hammond ◽  
John Hunter Mack ◽  
Robert W. Dibble

The effect of the direct injection of hydrogen peroxide into a port-injected methane fueled homogeneous charge compression ignition engine was investigated numerically. The injection of aqueous hydrogen peroxide was implemented as a means of combustion phasing control. A single cylinder homogeneous charge compression ignition engine (2.43 L Caterpillar) was modeled using the Cantera 2.0 flame code toolkit, the GRI-Mech 3.0 chemical reaction mechanism, and a single-zone slider-crank engine model. Start of injection timing and the amount of injected hydrogen peroxide were manipulated to achieve desired combustion phasing under a wide range of intake temperatures. As the concentration of hydrogen peroxide is increased, the combustion phasing is advanced up to 22 degrees for the conditions investigated in this study. This advancing effect is most pronounced at small concentrations (< 10 g H2O2 / kg CH4) and early injection timings (SOI < 25 degrees BTDC). The model suggests hydrogen peroxide can be introduced as a means of combustion phasing control while maintaining the low emissions and peak in-cylinder pressures inherent in homogeneous charge compression ignition engines.


Sign in / Sign up

Export Citation Format

Share Document