scholarly journals Seismic hazard disaggregation in performance-based earthquake engineering: occurrence or exceedance?

2015 ◽  
Vol 45 (5) ◽  
pp. 835-842 ◽  
Author(s):  
Matthew J. Fox ◽  
Peter J. Stafford ◽  
Timothy J. Sullivan

2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Pasquale Cito ◽  
Iunio Iervolino

At the state-of-the-art of structural codes, seismic design actions are based on probabilistic seismic hazard analysis (PSHA). In the performance-based earthquake engineering framework, the return period of exceedance of the reference ground motion is established based on the desired performance of the structure. It is easy to show and recognize that exceedance of elastic spectra, for the most common return periods considered for design, is very likely for some earthquakes if they occur close to the site of interest, and that this does not necessarily contradict the results of PSHA. Therefore, it might be relevant to gather insights about: (i) the probability that the site is in proximity of earthquakes of magnitude that can imply exceedance; (ii) the probability that earthquakes occurring close cause exceedance of design actions; (iii) the minimum magnitude of close-by events that are likely to cause exceedance of design actions, which are then referred to as the strong earthquakes; (iv) the accelerations that structures could be exposed to in the case of exceedance of design spectra. These results, which are produced for Italy in this study, may be considered by-products of PSHA, and are helpful in determining what to expect in terms of elastic actions for code-conforming structures in countries where probabilistic seismic hazard lies at the basis of structural design.



Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 503
Author(s):  
Lucia Nardone ◽  
Fabrizio Terenzio Gizzi ◽  
Rosalba Maresca

Cultural heritage represents our legacy with the past and our identity. However, to assure heritage can be passed on to future generations, it is required to put into the field knowledge as well as preventive and safeguard actions, especially for heritage located in seismic hazard-prone areas. With this in mind, the article deals with the analysis of ground response in the Avellino town (Campania, Southern Italy) and its correlation with the effects caused by the 23rd November 1980 Irpinia earthquake on the historical buildings. The aim is to get some clues about the earthquake damage cause-effect relationship. To estimate the ground motion response for Avellino, where strong-motion recordings are not available, we made use of the seismic hazard disaggregation. Then, we made extensive use of borehole data to build the lithological model so being able to assess the seismic ground response. Overall, results indicate that the complex subsoil layers influence the ground motion, particularly in the lowest period (0.1–0.5 s). The comparison with the observed damage of the selected historical buildings and the maximum acceleration expected indicates that the damage distribution cannot be explained by the surface geology effects alone.



2010 ◽  
Vol 39 (11) ◽  
pp. 1199-1217 ◽  
Author(s):  
Yue Li ◽  
Yuejun Yin ◽  
Bruce R. Ellingwood ◽  
William M. Bulleit


2017 ◽  
Vol 20 (11) ◽  
pp. 1744-1756 ◽  
Author(s):  
Peng Deng ◽  
Shiling Pei ◽  
John W. van de Lindt ◽  
Hongyan Liu ◽  
Chao Zhang

Inclusion of ground motion–induced uncertainty in structural response evaluation is an essential component for performance-based earthquake engineering. In current practice, ground motion uncertainty is often represented in performance-based earthquake engineering analysis empirically through the use of one or more ground motion suites. How to quantitatively characterize ground motion–induced structural response uncertainty propagation at different seismic hazard levels has not been thoroughly studied to date. In this study, a procedure to quantify the influence of ground motion uncertainty on elastoplastic single-degree-of-freedom acceleration responses in an incremental dynamic analysis is proposed. By modeling the shape of the incremental dynamic analysis curves, the formula to calculate uncertainty in maximum acceleration responses of linear systems and elastoplastic single-degree-of-freedom systems is constructed. This closed-form calculation provided a quantitative way to establish statistical equivalency for different ground motion suites with regard to acceleration response in these simple systems. This equivalence was validated through a numerical experiment, in which an equivalent ground motion suite for an existing ground motion suite was constructed and shown to yield statistically similar acceleration responses to that of the existing ground motion suite at all intensity levels.



Sign in / Sign up

Export Citation Format

Share Document