Inter-particle contact heat transfer model: an extension to soils at elevated temperatures

2005 ◽  
Vol 29 (2) ◽  
pp. 131-144 ◽  
Author(s):  
W. H. Leong ◽  
V. R. Tarnawski ◽  
F. Gori ◽  
G. D. Buchan ◽  
J. Sundberg
Author(s):  
Norazaliza Mohd Jamil ◽  
Aainaa Izyan Nafsun ◽  
Abdul Rahman Mohd Kasim

A new mathematical model describing heat transfer during the fermentation process in a rotary drum is proposed. The model includes representations of the kinetic reactions, the temperature of the solid bed, and physical structures within the rotary drum. The model is developed using five ordinary differential equations and was then solved using the Runge-Kutta method embedded in MATLAB software. A reasonable behaviour for the temperature profile to the fermentation process is achieved. The results show that the mass of the solid bed, contact heat transfer coefficient, and the wall temperature has a significant effect on the fermentation process in a rotary drum.


2013 ◽  
Vol 805-806 ◽  
pp. 492-495 ◽  
Author(s):  
Xiao Yan Yang ◽  
You Gang Xiao ◽  
Xian Ming Lei ◽  
Guo Xin Chen

According to kiln structure and material movement features, the transient heat conduction model of material bed and the contact heat transfer model at the interface of covered kiln wall and material bed are built. Considering their contribution to the convective heat transfer of material bed, the convective heat transfer coefficient between covered kiln wall and material bed is proposed, and its formula is obtained, with which the convective heat transfer between covered kiln wall and material bed can be calculated conveniently, so the heat transfer prediction within the rotary kiln can be done more easily.


2016 ◽  
Vol 47 (8) ◽  
pp. 2128-2152 ◽  
Author(s):  
Yun Su ◽  
Jiazhen He ◽  
Jun Li

This paper presents an experiment-based, multi-medium heat transfer model to study thermal responses of multi-layer protective clothing with an air gap exposed to thermal radiation and hot contact surface. The model considers the dynamical changes of air gap, each layer’s fabric thickness, and air content contained in the fabric due to the pressure applied. The fabric heat transfer model developed from this study was incorporated into a human skin burn model in order to predict skin burn injuries. The predicted results from the model were well in agreement with the experimental results. A parametric study was conducted using various contact temperatures and applied pressures and design variables of firefighting protective clothing, such as physical properties of fabric layers and air gap sizes. It was concluded from the parametric study that resistance to transmission of injurious levels of heat decreases as the test temperature and contact pressure increase, and the contact heat transfer can weaken the importance of air gap under radiant heat flux(8.5 kW/m2) for 60 s and compression (pressure: 3 kPa, temperature: 316℃) for 60 s. The findings obtained in this study can be used to engineer fabric systems that provide better protection for contact heat exposure.


2010 ◽  
Vol 160-162 ◽  
pp. 536-543
Author(s):  
Rui Feng Dou ◽  
Zhi Wen ◽  
Xun Liang Liu ◽  
Guo Feng Lou

Roller quench is a rapid cooling technique used in strip continuous heat-treatment process, which is one of the most important processes in producing cold-rolled strip steel. Heat transports by contact heat transfer in roller quench, for the complex characteristics of contact heat transfer, roller quench is very difficulty to simulate. In this paper a roller quench heat transfer model is build based on Fourier-Kirchhoff differential equations. A new correlation function of contact conductance is developed from statistical mechanics model results by least square method. This correlation function solves the heat transfer boundary condition in contact region between strip and roller. In this model the contact radiation is also considered. The roller quench model predicts the heat transfer characteristics of roller quench. The model is useful for the designing and controlling of the roller quench system.


2002 ◽  
Vol 26 (15) ◽  
pp. 1345-1358 ◽  
Author(s):  
V.R. Tarnawski ◽  
W.H. Leong ◽  
F. Gori ◽  
G.D. Buchan ◽  
J. Sundberg

1997 ◽  
Vol 28 (4-6) ◽  
pp. 393-397
Author(s):  
N. Yu. Koloskova ◽  
V. V. Dubrovskaya ◽  
V. V. Orlyanskii

Sign in / Sign up

Export Citation Format

Share Document