Heat Transfer Model in a Rotary Drum During the Fermentation Process

Author(s):  
Norazaliza Mohd Jamil ◽  
Aainaa Izyan Nafsun ◽  
Abdul Rahman Mohd Kasim

A new mathematical model describing heat transfer during the fermentation process in a rotary drum is proposed. The model includes representations of the kinetic reactions, the temperature of the solid bed, and physical structures within the rotary drum. The model is developed using five ordinary differential equations and was then solved using the Runge-Kutta method embedded in MATLAB software. A reasonable behaviour for the temperature profile to the fermentation process is achieved. The results show that the mass of the solid bed, contact heat transfer coefficient, and the wall temperature has a significant effect on the fermentation process in a rotary drum.

2013 ◽  
Vol 805-806 ◽  
pp. 492-495 ◽  
Author(s):  
Xiao Yan Yang ◽  
You Gang Xiao ◽  
Xian Ming Lei ◽  
Guo Xin Chen

According to kiln structure and material movement features, the transient heat conduction model of material bed and the contact heat transfer model at the interface of covered kiln wall and material bed are built. Considering their contribution to the convective heat transfer of material bed, the convective heat transfer coefficient between covered kiln wall and material bed is proposed, and its formula is obtained, with which the convective heat transfer between covered kiln wall and material bed can be calculated conveniently, so the heat transfer prediction within the rotary kiln can be done more easily.


2018 ◽  
Vol 769 ◽  
pp. 371-376 ◽  
Author(s):  
Elena Alexandrovna Muravyova ◽  
Alexander Ivanovich Kubryak

The article describes the development of a mathematical model for a condenser-evaporator, which occupies a central position in chlorine liquefaction process. The model describes the key processes in the equipment unit: freon evaporation, chlorine condensation, change in freon level and in equipment pressure. The model is based on the equations characterizing the processes mentioned above, which makes it possible to use the model for design and calculations of non-contact heat transfer equipment with phase transitions of heat carriers of various characteristics. The simulation was carried out with the aim of further development of a condenser-evaporator control system.


1980 ◽  
Vol 102 (1) ◽  
pp. 32-37 ◽  
Author(s):  
N. Kaji ◽  
Y. H. Mori ◽  
Y. Tochitani ◽  
K. Komotori

The characteristics of the augmentation technique previously proposed by the authors has been studied experimentally with water drops 3.9 to 5.9 mm in diameter rising in methylphenyl silicone oil. Each drop is subjected to an intermittent electric field applied periodically perpendicular to its trajectory, and the drop responds by periodic elongation in the direction of the field. The dependence of heat transfer coefficient on the strength, frequency and duty ratio of the field is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document