Numerical investigations on the emitter power and energy conversion efficiency improvement of micro‐cylindrical combustor by an internal spiral fin for micro‐thermophotovoltaic systems

Author(s):  
Ting Zhao ◽  
Yunfei Yan ◽  
Ziqiang He ◽  
Zhongqing Yang ◽  
Li Zhang
2016 ◽  
Vol 102 ◽  
pp. 17-23 ◽  
Author(s):  
Zihang Liu ◽  
Jing Shuai ◽  
Jun Mao ◽  
Yumei Wang ◽  
Zhengyun Wang ◽  
...  

Author(s):  
Hiroshi Iwai ◽  
Tatsuo Ishikawa ◽  
Hideo Yoshida

As one of the possible electrolyte materials for intermediate temperature SOFCs that works around 500 to 800°C, we focus on Gadolinia Doped Ceria (GDC). This ceramic material shows reasonable ion conductivity even at 600°C. It, however, is a mixed conductive material having non-negligible electronic conductivity. In this study, the fundamental performance of a simple planar SOFC with GDC electrolyte is numerically investigated. The effects of electrical leakage on the cell performance are the main focus of discussion. The electrolyte thickness is varied in a range from 50 to 200μm. Both air and fuel flows are assumed to be steady and laminar. Governing equations are the continuity, momentum, energy and mass transfer equations. They are solved numerically by the control volume method. It is found that the leakage of electricity becomes larger for the smaller electrolyte thickness cases, and is more prominent for an electrolyte thickness of less than 80μm. Under such conditions, output power and energy conversion efficiency decrease dramatically. On the other hand, energy conversion efficiency also decreases for an electrolyte thickness that is too large because of the increase of ohmic overpotential of the electrolyte. Consequently, there seems to be an adequate thickness for the electrolyte that gives preferable output power and energy conversion efficiency.


2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


Sign in / Sign up

Export Citation Format

Share Document