A concise review on the elastomeric behavior of electroactive polymer materials

Author(s):  
Muhammad Khan ◽  
Tiehu Li ◽  
Asif Hayat ◽  
Amir Zada ◽  
Tariq Ali ◽  
...  
2007 ◽  
Vol 16 (2) ◽  
Author(s):  
Yoseph Bar-Cohen ◽  
Kwang J Kim ◽  
Hyouk Ryeol Choi ◽  
John D W Madden

2018 ◽  
Vol 29 (19) ◽  
pp. 3681-3695 ◽  
Author(s):  
Musavir Bashir ◽  
Parvathy Rajendran

Newfangled smart materials have inspired the researchers to look for more efficient materials that can respond to specific stimuli and retain the original shape. Electroactive polymers are such materials which are capable of sensing and real-time actuation. Various electroactive polymers are excellent candidates due to high strain rate, fast response, reliability and high mechanical compliance despite tough manufacturing. In this study, electroactive polymers are reviewed and the general enabling mechanisms employing their distinct characteristics are presented, and the factors influencing the properties of various electroactive polymers are also discussed. Our study also enumerates the current trends in the development of electroactive polymers along with its progress in aerospace discipline. The electromechanical properties of electroactive polymer materials endow them the capability to work as both sensors and actuators in the field of aerospace. Hence, we provide an overview of various applications of electroactive polymers in aerospace field, notably aircraft morphing. These actuators are vastly used in aerospace applications like Mars Nano-rover, space robotic, flapping wings and active flap. Therefore, the electroactive polymer applications such as effective actuators can be investigated more in their materials, molecular interactions, electromechanics and actuation mechanisms. Considering electroactive polymers unique properties, they will endeavour the great potential applications within aerospace industry.


1999 ◽  
Author(s):  
Kwang J. Kim ◽  
Mohsen Shahinpoor ◽  
Arsalan Razani

MRS Bulletin ◽  
2008 ◽  
Vol 33 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Liangti Qu ◽  
Qiang Peng ◽  
Liming Dai ◽  
Geoffrey M. Spinks ◽  
Gordon G. Wallace ◽  
...  

AbstractCarbon nanotubes (CNTs) with macroscopically ordered structures (e.g., aligned or patterned mats, fibers, and sheets) and associated large surface areas have proven promising as new CNT electroactive polymer materials (CNT-EAPs) for the development of advanced chemical and biological sensors. The functionalization of CNTs with many biological species to gain specific surface characteristics and to facilitate electron transfer to and from them for chemical- and bio-sensing applications is an area of intense research activity.Mechanical actuation generated by CNT-EAPs is another exciting electroactive function provided by these versatile materials. Controlled mechanical deformation for actuation has been demonstrated in CNT mats, fibers, sheets, and individual nanotubes. This article summarizes the current status and technological challenges for the development of electrochemical sensors and electromechanical actuators based on carbon nanotube electroactive materials.


Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Brittany Newell ◽  
Jose Garcia ◽  
Gary Krutz

Dielectric electroactive polymer materials represent a distinct group of smart materials that are capable of converting between electrical and mechanical energy. This research focuses on the modeling and testing of an industrial grade fluoropolymer material for its feasibility as a dielectric elastomer electroactive polymer. Through this process, a novel chemical pre-strain method was tested, along with a one-step process for application of pre-strain and addition of an elastomer conductive layer. Modeled and experimental actuators produced approximately 1 mm displacements with 0.625 W of electrical power. The displacement of the actuators was characterized, and the effects of multiple parameters were modeled and analyzed.


Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Sign in / Sign up

Export Citation Format

Share Document