A molecular amalgamation of carbon nitride polymer as emphasized photocatalytic performance

Author(s):  
Asif Hayat ◽  
Taha A. Taha ◽  
Asma M. Alenad ◽  
Tariq Ali ◽  
Tariq Bashir ◽  
...  
2021 ◽  
Author(s):  
Vellaichamy Balakumar ◽  
Manivannan Ramalingam ◽  
Chitiphon Chuaicham ◽  
KARTHIKEYAN SEKAR ◽  
K. Sasaki

Hollow porous graphitic carbon nitride (porous CN) was synthesized via a simple tactic method, and the resulting porous CN showed an effectively modified surface area, crystal structure and enhanced photocatalytic...


2018 ◽  
Vol 281 ◽  
pp. 848-853
Author(s):  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Zhi Wei Zhou ◽  
Shu Wang Duo

Graphitic carbon nitride is a promising photocatalyst for environmental purification, but the photocatalytic performance is limited significantly due to its narrow visible-light adsorption and high photo-reduced electron-hole recombination rate. This work developed a novel way to overcome the two defects and obtained obvious effect. CoAPO-5 was used to broaden visible-light adsorption range by conducting g-C3N4/CoAPO-5 binary composite. In further, rGO was integrated into the binary system to form novel ternary composite. rGO performs as a electron mediator, which can inhibit photo-reduced electron-hole recombination efficiently. The samples were characterized by XRD, SEM, PL, IR and DRS. The photocatalytic performances for degrading RhB (10mg/L) indicated that g-C3N4/CoAPO-5/rGO have much higher activity than g-C3N4/CoAPO-5 because of synergistic effect. When the doping content of rGO in g-C3N4/CoAPO-5 was 0.5%, the degradation efficiency was improved by 14%.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Wang ◽  
Meisheng Li ◽  
Ming Qian ◽  
Shouyong Zhou ◽  
Ailian Xue ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1751 ◽  
Author(s):  
Ying Gao ◽  
Jizhou Duan ◽  
Xiaofan Zhai ◽  
Fang Guan ◽  
Xiutong Wang ◽  
...  

Discovering novel materials and improving the properties of existing materials are the main goals in the field of photocatalysis to increase the potential application of the materials. In this paper, a modified graphitic carbon nitride (g-C3N4) photocatalyst named Fe3+-doped alkalized carbon nitride, which couples the photocatalytic reaction with the Fenton reaction, is introduced to demonstrate its Rhodamine B (RhB) degradation and antibacterial properties. Under visible-light irradiation, the degradation rate of RhB was 99.9% after 200 min, while the antibacterial rates of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) after 300 min were 99.9986%, 99.9974%, and 99.9876%, respectively. Moreover, the repetitive experiments of RhB degradation demonstrate that the proposed photocatalysts have excellent stability and reusability. The active free radical trapping experiments reveal that the superoxide radical (·O2−) is the dominant reactive oxygen species. In addition, the Fenton reaction is introduced into the photocatalytic system due to the doping of Fe3+, and the hydroxyl radical (·OH) produced from the Fenton reaction further enhances the photocatalytic performance. The remarkable improvement in photocatalytic performance of the proposed photocatalyst can be attributed to its broader UV–visible absorption characteristic and the occurrence of the Fenton reaction.


Sign in / Sign up

Export Citation Format

Share Document