scholarly journals Photocatalytic Degradation and Antibacterial Properties of Fe3+-Doped Alkalized Carbon Nitride

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1751 ◽  
Author(s):  
Ying Gao ◽  
Jizhou Duan ◽  
Xiaofan Zhai ◽  
Fang Guan ◽  
Xiutong Wang ◽  
...  

Discovering novel materials and improving the properties of existing materials are the main goals in the field of photocatalysis to increase the potential application of the materials. In this paper, a modified graphitic carbon nitride (g-C3N4) photocatalyst named Fe3+-doped alkalized carbon nitride, which couples the photocatalytic reaction with the Fenton reaction, is introduced to demonstrate its Rhodamine B (RhB) degradation and antibacterial properties. Under visible-light irradiation, the degradation rate of RhB was 99.9% after 200 min, while the antibacterial rates of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) after 300 min were 99.9986%, 99.9974%, and 99.9876%, respectively. Moreover, the repetitive experiments of RhB degradation demonstrate that the proposed photocatalysts have excellent stability and reusability. The active free radical trapping experiments reveal that the superoxide radical (·O2−) is the dominant reactive oxygen species. In addition, the Fenton reaction is introduced into the photocatalytic system due to the doping of Fe3+, and the hydroxyl radical (·OH) produced from the Fenton reaction further enhances the photocatalytic performance. The remarkable improvement in photocatalytic performance of the proposed photocatalyst can be attributed to its broader UV–visible absorption characteristic and the occurrence of the Fenton reaction.

2020 ◽  
Vol 13 (06) ◽  
pp. 2051033
Author(s):  
Peng Zhang ◽  
Jiquan Wang ◽  
Jie Gong ◽  
Kai Wang ◽  
Yuan Li ◽  
...  

In this study, we synthesized graphic carbon nitride nanosheets (labeled as CNs) by solid-phase grinding strategy coupled calcination method and then prepared Ag nanoparticles (NPs) loaded CNs composites by photodeposition. The as-prepared Ag/CNs composites presented remarkably enhanced photocatalytic performance and the degradation rate of tetracycline (TC) by Ag/CNs (3[Formula: see text]wt.%) composite is above two times higher than that by pristine CNs under visible light irradiation. The enhanced photocatalytic activity originated from the close contact between Ag and CNs, and the localized surface plasmon resonance (LSPR) effect of Ag. Moreover, the results of radical trapping experiments illustrated that [Formula: see text] plays a dominant role in photocatalytic degradation of TC. This work provides a new way for design novel noble metal modified graphic CN photocatalysts.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1411
Author(s):  
Mujahid Mehdi ◽  
Huihui Qiu ◽  
Bing Dai ◽  
Raja Fahad Qureshi ◽  
Sadam Hussain ◽  
...  

Fiber based antibacterial materials have gained an enormous attraction for the researchers in these days. In this study, a novel Sericin Encapsulated Silver Nanoclusters (sericin-AgNCs) were synthesized through single pot and green synthesis route. Subsequently these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate (CA) fibers for assessing the antibacterial performance. The physicochemical properties of sericin-AgNCs/CA composite fibers were investigated by transmission electron microscopy (TEM), field emission electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR) and wide X-ray diffraction (XRD). The antibacterial properties of sericin-AgNCs/CA composite fibers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were systematically evaluated. The results showed that sericin-AgNCs incorporated in ultrafine CA fibers have played a vital role for antibacterial activity. An amount of 0.17 mg/mL sericin-AgNCs to CA fibers showed more than 90% results and elevated upto >99.9% with 1.7 mg/mL of sericin-AgNCs against E. coli. The study indicated that sericin-AgNCs/CA composite confirms an enhanced antibacterial efficiency, which could be used as a promising antibacterial product.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 704
Author(s):  
Angela Di Somma ◽  
Carolina Canè ◽  
Antonio Moretta ◽  
Angela Duilio

The research of new therapeutic agents to fight bacterial infections has recently focused on the investigation of antimicrobial peptides (AMPs), the most common weapon that all organisms produce to prevent invasion by external pathogens. Among AMPs, the amphibian Temporins constitute a well-known family with high antibacterial properties against Gram-positive and Gram-negative bacteria. In particular, Temporin-L was shown to affect bacterial cell division by inhibiting FtsZ, a tubulin-like protein involved in the crucial step of Z-ring formation at the beginning of the division process. As FtsZ represents a leading target for new antibacterial compounds, in this paper we investigated in detail the interaction of Temporin L with Escherichia coli FtsZ and designed two TL analogues in an attempt to increase peptide-protein interactions and to better understand the structural determinants leading to FtsZ inhibition. The results demonstrated that the TL analogues improved their binding to FtsZ, originating stable protein-peptide complexes. Functional studies showed that both peptides were endowed with a high capability of inhibiting both the enzymatic and polymerization activities of the protein. Moreover, the TL analogues were able to inhibit bacterial growth at low micromolar concentrations. These observations may open up the way to the development of novel peptide or peptidomimetic drugs tailored to bind FtsZ, hampering a crucial process of bacterial life that might be proposed for future pharmaceutical applications.


2021 ◽  
pp. 088532822110044
Author(s):  
Haiyang Wang ◽  
Toshinari Maeda ◽  
Toshiki Miyazaki

Bone cement based on poly(methyl methacrylate) (PMMA) powder and methyl methacrylate (MMA) liquid is a very popular biomaterial used for the fixation of artificial joints. However, there is a risk of this cement loosening from bone because of a lack of bone-bonding bioactivity. Apatite formation in the body environment is a prerequisite for cement bioactivity. Additionally, suppression of infection during implantation is required for bone cements to be successfully introduced into the human body. In this study, we modified PMMA cement with γ-methacryloxypropyltrimetoxysilane and calcium acetate to introduce bioactive properties and 2-( tert-butylamino)ethyl methacrylate (TBAEMA) to provide antibacterial properties. The long-term antibacterial activity is attributed to the copolymerization of TBAEMA and MMA. As the TBAEMA content increased, the setting time increased and the compressive strength decreased. After soaking in simulated body fluid, an apatite layer was detected within 7 days, irrespective of the TBAEMA content. The cement showed better antibacterial activity against Gram-negative E. Coli than Gram-positive bacteria; however, of the Gram-positive bacteria investigated, B. subtilis was more susceptible than S. aureus.


Author(s):  
Asif Hayat ◽  
Taha A. Taha ◽  
Asma M. Alenad ◽  
Tariq Ali ◽  
Tariq Bashir ◽  
...  

2021 ◽  
Author(s):  
Vellaichamy Balakumar ◽  
Manivannan Ramalingam ◽  
Chitiphon Chuaicham ◽  
KARTHIKEYAN SEKAR ◽  
K. Sasaki

Hollow porous graphitic carbon nitride (porous CN) was synthesized via a simple tactic method, and the resulting porous CN showed an effectively modified surface area, crystal structure and enhanced photocatalytic...


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1541
Author(s):  
Jie Zhang ◽  
Jia Wang ◽  
Qingjun Zhu ◽  
Binbin Zhang ◽  
Huihui Xu ◽  
...  

A novel AgBr/Ag2MoO4@InVO4 composite photocatalyst with different heterojunction structures was successfully constructed by compounding InVO4 with Ag2MoO4 and AgBr. According to the degradation, antibacterial and free radical trapping data, the photocatalytic antibacterial and antifouling activities of AgBr/Ag2MoO4@InVO4 composite were evaluated, and the corresponding photocatalytic reaction mechanism was proposed. Adding AgBr/Ag2MoO4@InVO4 composite, the degradation rate of ciprofloxacin (CIP) achieved 95.5% within 120 min. At the same time, the antibacterial rates of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) achieved 99.99%. The AgBr/Ag2MoO4@InVO4 composite photocatalyst showed promising usage in photocatalytic antibacterial and purification areas.


Sign in / Sign up

Export Citation Format

Share Document