The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling

2006 ◽  
Vol 31 (4) ◽  
pp. 444-456 ◽  
Author(s):  
A. Casas ◽  
G. Benito ◽  
V.R. Thorndycraft ◽  
M. Rico
Author(s):  
Bruce Smith ◽  
Yan Wong ◽  
Steve Adam

Within the last decade, airborne lidar (Light Detection And Ranging) equipment has evolved to the point where it can provide accurate ground surface elevations on a dense grid (often 1m by 1m) along pipeline corridors, at a cost that is a fraction of the cost for a comparable ground based topographic survey. This paper explains how lidar is used to acquire topographic data and how the data are converted to digital terrain models referenced to geodetic benchmarks. The accuracy and density of topographic data acquired by lidar surveys can be used to greatly facilitate pipeline design and reduce pipeline construction costs. The major benefits include: 1) The density of ground surface elevations obtained using lidar are significantly better than can be obtained using photogrammetry or conventional ground based survey methods. 2) The survey data can be collected over large areas in a matter of days and with virtually no disturbance to landowners. 3) The digital terrain models derived from lidar survey data can be imported into existing drafting (CAD) software and used to efficiently generate centerline profiles, cross-sections and alignment sheets as required for pipeline design and construction. 4) Hillshade maps derived from lidar data have proven extremely useful in pipeline route studies because they allow surface features to be identified and often avoided, thereby minimizing pipeline construction and operating costs.


Water ◽  
2014 ◽  
Vol 6 (2) ◽  
pp. 271-300 ◽  
Author(s):  
Jenni-Mari Vesakoski ◽  
Petteri Alho ◽  
Juha Hyyppä ◽  
Markus Holopainen ◽  
Claude Flener ◽  
...  

2021 ◽  
pp. 22-29
Author(s):  
Dmitriy A. Roshchin

The problem of improving the accuracy of digital terrain models created for monitoring and diagnostics of the railway track and the surrounding area is considered. A technical solution to this problem is presented, which includes a method for joint aerial photography and laser scanning, as well as a method for digital processing of the obtained data. The relevance of using this solution is due to the existence of zones of weak reception of signals from the global navigation satellite system, since in these zones the accuracy of constructing digital terrain models using currently used diagnostic spatial scanning systems is reduced. The technical solution is based on the method of digital processing of aerial photographs of the railway track. In this case, as elements of external orientation, the threads of the rail track located at a normalized distance from each other are used. The use of this method made it possible to increase the accuracy of determining the flight path of an aircraft over railway tracks and, as a result, the accuracy of calculating the coordinates of points on the earth's surface. As a result, a digital terrain model was created that is suitable for diagnostics and monitoring the condition of the railway trackbed. During simulation modeling, it was found that the application of the proposed method allowed to reduce to 50 % the confidence interval of the distribution of the error in determining the coordinates of points on the terrain and increase the accuracy of forming a digital terrain model. This promising technical solution for improving the accuracy of digital terrain models for railway track diagnostics is implemented using unmanned aerial vehicles that are part of the mobile diagnostic complex. The advantages of the proposed solution include high efficiency and availability of application.


Sign in / Sign up

Export Citation Format

Share Document