scholarly journals Rates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated fromin situcosmogenic10Be

2016 ◽  
Vol 42 (6) ◽  
pp. 928-940 ◽  
Author(s):  
Colleen L. Linari ◽  
Paul R. Bierman ◽  
Eric W. Portenga ◽  
Milan J. Pavich ◽  
Robert C. Finkel ◽  
...  
2016 ◽  
Vol 46 (8) ◽  
pp. 1019-1025 ◽  
Author(s):  
Carolyn A. Copenheaver ◽  
Tara L. Keyser

We hypothesized that tree form, recorded in historical public land surveys, would provide a valuable proxy record of regeneration patterns during early-European settlement of North America’s eastern deciduous forest. To test this hypothesis, we tallied stem form from witness trees used in land survey records in the southern Appalachian Mountains from 13 counties spanning four physiographic provinces: Piedmont, Blue Ridge, Ridge and Valley, and Cumberland Plateau. A total of 3% of witness trees used in the land surveys were of sprout origin. American basswood (Tilia americana L.) exhibited the highest proportion of sprout-origin trees at 12%. Other overstory species with a high proportion of sprout-origin trees were hickory (Carya sp.), red maple (Acer rubrum L.), and sycamore (Platanus occidentalis L.), all with 6% of stems being from sprout origin. Blue Ridge had significantly more sprout-origin trees compared with the other three physiographic provinces. Forests in the southern Appalachian Mountains during the pre-European settlement period had a suite of disturbances that controlled their growth and regeneration; however, most of these disturbances did not result in large-scale tree mortality, and therefore, sprouts were not an important source of regeneration.


Castanea ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 128
Author(s):  
John R. Butnor ◽  
Brittany M. Verrico ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
Victor Vankus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document