Controls of alluvial cover formation, morphology and bedload transport in a sinuous channel with a non‐alluvial boundary

Author(s):  
E. Papangelakis ◽  
M. Welber ◽  
P. Ashmore ◽  
B. MacVicar
1992 ◽  
Vol 25 (8) ◽  
pp. 115-122 ◽  
Author(s):  
G. S. Perrusquía

An experimental study of the transport of sediment in a part-full pipe was carried out in a concrete pipe. The experiments were confined to bedload transport. The purpose of this study was to analyze the flow conditions that characterize the stream traction in pipe channels and their relationship to flow resistance and sediment transport rate. Three procedures used in this kind of experimental study were tested and found valid: 1) the vertical velocity distribution near the sediment bed can be described by the velocity-defect law, 2) the side wall elimination procedure can be used to compute the hydraulic radius of the sediment bed, and 3) the critical shear stress of the sediment particles can be obtained by using Shields' diagram. A relationship to estimate bedload transport, based on dimensional analysis, was proposed. This was expressed in terms of both flow and particle parameters as well as geometric factors. Further experimental work is recommended before this relationship can be fully incorporated in a simulation model for the analysis of storm sewers.


2021 ◽  
Vol 18 (6) ◽  
pp. 1405-1423
Author(s):  
Dariusz Strzyżowski ◽  
Elżbieta Gorczyca ◽  
Kazimierz Krzemień ◽  
Mirosław Żelazny

AbstractStrong wind events frequently result in creating large areas of windthrow, which causes abrupt environmental changes. Bare soil surfaces within pits and root plates potentially expose soil to erosion. Absence of forest may alter the dynamics of water circulation. In this study we attempt to answer the question of whether extensive windthrows influence the magnitude of geomorphic processes in 6 small second- to third-order catchments with area ranging from 0.09 km2 to 0.8 km2. Three of the catchments were significantly affected by a windthrow which occurred in December 2013 in the Polish part of the Tatra Mountains, and the other three catchments were mostly forested and served as control catchments. We mapped the pits created by the windthrow and the linear scars created by salvage logging operations in search of any signs of erosion within them. We also mapped all post-windthrow landslides created in the windthrow-affected catchments. The impact of the windthrow on the fluvial system was investigated by measuring a set of channel characteristics and determining bedload transport intensity using painted tracers in all the windthrow-affected and control catchments. Both pits and linear scars created by harvesting tend to become overgrown by vegetation in the first several years after the windthrow. The only signs of erosion were observed in 10% of the pits located on convergent slopes. During the period from the windthrow event in 2013 until 2019, 5 very small (total area <100 m2) shallow landslides were created. The mean distance of bedload transport was similar (t-test, p=0.05) in most of the windthrow-affected and control catchments. The mapping of channels revealed many cases of root plates fallen into a channel and pits created near a channel. A significant amount of woody debris delivered into the channels influenced the activity of fluvial processes by creating alternating zones of erosion and accumulation.


1989 ◽  
Vol 26 (7) ◽  
pp. 1440-1452 ◽  
Author(s):  
R. A. Kostaschuk ◽  
M. A. Church ◽  
J. L. Luternauer

The lower main channel of the Fraser River, British Columbia, is a sand-bed, salt-wedge estuary in which variations in velocity, discharge, and bedform characteristics are contolled by river discharge and the tides. Bed-material composition remains consistent over the discharge season and in the long term. Changes in bedform height and length follow but lag behind seasonal fluctuations in river discharge. Migration rates of bedforms respond more directly to river discharge and tidal fall than do height and length. Bedform characteristics were utilized to estimate bedload transport in the estuary, and a strong, direct, but very sensitive relationship was found between bed load and river discharge. Annual bedload transport in the estuary is estimated to be of the order of 0.35 Mt in 1986. Bedload transport in the estuary appears to be higher than in reaches upstream, possibly because of an increase in sediment movement along the bed to compensate for a reduction in suspended bed-material load produced by tidal slack water and the salt wedge.


2021 ◽  
Author(s):  
Zheng Chen ◽  
Siming He ◽  
Tobias Nicollier ◽  
Lorenz Ammann ◽  
Alexandre Badoux ◽  
...  

&lt;p&gt;The Swiss plate geophone (SPG) system is an indirect bedload transport monitoring device that records the acoustic signals generated by bedload particle impacts, with the goal to derive the bedload flux and grain size distribution. Particle drop experiments with quartz spheres in quiescent water in a flume setting were performed to investigate the dynamic signal response of the SPG system impacted by particle-like objects varying in size and impact location. Systematic flume experiments with natural bedload particles in flowing water were conducted to study the effects of impact angle and transport mode (saltating, rolling and sliding) on the SPG signals. For each impact caused by a single particle, the number of signal impulses, the amplitude, the positive area surrounded by the signal envelope, and the centroid frequency were extracted from the raw geophone monitoring data. The finite element method (FEM) was used to construct a virtual model of the SPG system and to determine the propagation characteristics of the numerical stress wave in the material structure. The experimental and numerical results showed a qualitative and partially quantitative agreement in the changes of the signal impulses, the amplitude, and the envelope area with increasing colliding sphere size. The centroid frequencies of the SPG vibrations showed qualitatively similar dependencies with increasing particle size as some field measurements for the coarser part of the investigated range of impact sizes. The effects of variable particle impact velocities and impact locations on the geophone plate were also investigated by drop experiments and compared to FEM simulations. In addition, the signal response for different bedload transport modes and varying impact angles were explored. In summary, the FEM simulations contribute to the understanding of the signal response of the SPG system and the findings in this study may eventually result in improving the bedload grain size classification and transport mode recognition.&lt;/p&gt;


2021 ◽  
Author(s):  
Mohamad Nasr ◽  
Thomas Geay ◽  
Sébastien Zanker ◽  
Recking Alain

&lt;p&gt;Quantifying bedload transport is important for many applications such as river management and hydraulic structures protection. Bedload flux measurements can be achieved using physical sampler methods. However, these methods are expensive, time-consuming, and difficult to operate during high discharge events. Besides, these methods do not permit to capture the spatial and temporal variability of bedload transport flux. Recently, alternative measuring technologies have been developed to continuously monitor bedload flux and grain size distribution using passive or active sensors. Among them, the hydrophone was used to monitor bedload transport by recording the sounds generated by bedload particles colliding on the river bed (referred as self-generated noise SGN). The acoustic power of SGN was correlated with bedload flux in field experiments. To better understand these experimental results and to estimate measurement uncertainties, we developed a theoretical model to simulate the SGN. The model computes an estimation of the power spectral density (PSD)by considering the contribution of all signals generated by impacts between bedload particles and the riverbed, and accounting for the attenuation of the acoustic signal between the source and the hydrophone position due to river propagation effects,. In this model, we&lt;/p&gt;&lt;p&gt;The energy of acoustic noise generated from the collision between two particles is mainly dependent on the transported particles' diameter and the impact velocity. We tested different empirical formulas for the estimation of the number of impact (impact rate) and the impact velocity depending on particle size and hydraulic conditions. To characterize the acoustic power losses as a function of distance and frequency, we used an attenuation function which was experimentally calibrated for different French rivers.&lt;/p&gt;&lt;p&gt;We tested the model on a field dataset comprising acoustic and bedload flux measurements. The results indicate that the PSD model allows estimating acoustic power (in between a range of one order of magnitude) for most of the rivers considered.&amp;#160; The model sensitivity was evaluated. In particular, we observed that it is very sensitive to the empirical formulas used to determine the impact rate and impact speed. In addition, special attention should be kept in mind on the assumption of the grain size distribution of riverbed which can generate large variability in some rivers particularly in rivers with a significant sand fraction.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document