Sinkhole subsidence monitoring combining terrestrial laser scanner and high‐precision levelling

Author(s):  
Jorge Sevil ◽  
Alfonso Benito‐Calvo ◽  
Francisco Gutiérrez
GEOMATICA ◽  
2013 ◽  
Vol 67 (1) ◽  
pp. 21-30
Author(s):  
Daniel Lo ◽  
Axel Ebeling ◽  
William F. (Bill) Teskey ◽  
Robert Radovanovic

Deformation monitoring was carried out in two epochs on Turtle Mountain, Alberta using a high-precision total station, a terrestrial laser scanner, and geodetic quality GNSS receivers. From the total station observations, coordinates were computed for seven signalized target points in a least-squares network adjustment. Then, a deformation analysis using a multi-parameter transformation was performed to derive movements between epochs. Precise point positioning was performed using GNSS receivers at another set of target points and control points, with another least squares network adjustment performed on this network. Terrestrial laser scanning was performed in the saddle region, with registration via an iterative closest point algorithm performed on the two point clouds to determine movement between the two epochs. Movement into the saddle from North Peak and South Peak was detected by analysis of 2008 and 2011 high-precision total station observations. This movement was also detected by analysis of 2008 and 2011 terrestrial laser scanner observations. Movement of 10 of 18 target points on Turtle Mountain was detected by analysis of 2010 and 2011 precise point positioning observations. Backward or sideways tilting with little or no downhill translation occurred at 6 points, while downhill translation and/or forward tilting occurred at 4 points.


Author(s):  
Nikolay Lugovoy ◽  
Nikolay Lugovoy ◽  
Askar Ilyasov ◽  
Askar Ilyasov ◽  
Elena Pronina ◽  
...  

The paper describes application of the terrestrial laser scanner for investigation of coastal dynamics of the Svetlogorskaya Bay, Baltic Sea. Methods of investigation and results of surveys repeated over the two consecutive years for quantification of coastal erosion and slope processes within the coastal zone are presented.


2020 ◽  
Author(s):  
Collin Megee ◽  
◽  
Michael O'Neal ◽  
Joseph Clemens ◽  
Erica McMaster ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


2020 ◽  
Vol 3 (1) ◽  
pp. 93
Author(s):  
Iulian Constantin Dănilă

Short rotation forestry (SRF) provides an important supply of biomass for investors in this area. In the NE (North-East) part of Romania at the present time are installed over 800 Ha of this kind of crops. The SRF enjoys the support through environmental policies, in relation to climate change and the provisions of the Kyoto Protocol to reduce the concentration of CO2 in the atmosphere. A precise estimate of biomass production is necessary for the sustainable planning of forest resources and for the exchange of energy in ecosystems. The use of the terrestrial laser scanner (TLS) in estimating the production of above ground wood biomass (AGWB) of short rotation forestry (SRF) brings an important technological leap among indirect (non-destructive) methods. TLS technology is justified when destructive methods become difficult to implement, and allometric equations do not provide accurate information. The main purpose of the research is to estimate the biomass productivity on tree parts in short rotation forestry with TLS technology. Measuring the hybrid poplars crops by TLS may have the following consequences: (1) Higher accuracy of the estimate of biomass production in the SRF; (2) cost and time effective measurements over the biomass of tree parts; (3) new and validated allometric equations for SRF in NE Romania; (4) solid instrument for industry to estimate biomass. TLS technology gives accurate estimates for DBH, tree height and location, as much as the volume on segments, commercial volume or crown volume can be determined. The accuracy of these values depends on the original scan data and their co-registration. The research will contribute to the development of knowledge in the field of hybrid crops.


Sign in / Sign up

Export Citation Format

Share Document