Atmospheric responses to Arctic sea ice loss in a high-top atmospheric general circulation model

2019 ◽  
Author(s):  
Yu-Chiao Liang ◽  
Young-Oh Kwon ◽  
Claude Frankignoul ◽  
Gokhan Danabasoglu ◽  
Stephen Yeager
1997 ◽  
Vol 25 ◽  
pp. 96-101 ◽  
Author(s):  
Gregory M. Flato ◽  
David Ramsden

Open-water leads in sea ice dominate the exchange of heat between the ocean and atmosphere in ice-covered regions, and so must be included in climate models. A parameterization of leads used in one such model is compared to observations and the results of a detailed Arctic sea-ice model. Such comparisons, however, are hampered by the errors in observed lead fraction, but the parameterization appears to compare better in winter than in summer. Simulations with an atmospheric general circulation model (AGCM), using prescribed sea-surface temperatures and ice extent, are used to illustrate the effect of parameterized lead fraction on atmospheric climate, and so provide some insight into the importance of improved lead-fraction parameterizations and observations. The effect of leads in the AGCM is largest in Northern Hemisphere winter, with zonal mean surface-air temperatures over ice increasing by up to 5 K when lead fraction is increased from 1% to near 5%. The effect of leads on sensible heat loss in winter is more important than the effect on radiative heat gain in summer. No significant effect on sea-level pressure, and hence on atmospheric circulation, is found, however. Indirect effects, due to feedbacks between the atmosphere and ice thickness and extent, were not included in these simulations, but could amplify the response.


1997 ◽  
Vol 25 ◽  
pp. 96-101 ◽  
Author(s):  
Gregory M. Flato ◽  
David Ramsden

Open-water leads in sea ice dominate the exchange of heat between the ocean and atmosphere in ice-covered regions, and so must be included in climate models. A parameterization of leads used in one such model is compared to observations and the results of a detailed Arctic sea-ice model. Such comparisons, however, are hampered by the errors in observed lead fraction, but the parameterization appears to compare better in winter than in summer. Simulations with an atmospheric general circulation model (AGCM), using prescribed sea-surface temperatures and ice extent, are used to illustrate the effect of parameterized lead fraction on atmospheric climate, and so provide some insight into the importance of improved lead-fraction parameterizations and observations. The effect of leads in the AGCM is largest in Northern Hemisphere winter, with zonal mean surface-air temperatures over ice increasing by up to 5 K when lead fraction is increased from 1% to near 5%. The effect of leads on sensible heat loss in winter is more important than the effect on radiative heat gain in summer. No significant effect on sea-level pressure, and hence on atmospheric circulation, is found, however. Indirect effects, due to feedbacks between the atmosphere and ice thickness and extent, were not included in these simulations, but could amplify the response.


2017 ◽  
Vol 30 (11) ◽  
pp. 3945-3962 ◽  
Author(s):  
James A. Screen

Abstract The loss of Arctic sea ice is already having profound environmental, societal, and ecological impacts locally. A highly uncertain area of scientific research, however, is whether such Arctic change has a tangible effect on weather and climate at lower latitudes. There is emerging evidence that the geographical location of sea ice loss is critically important in determining the large-scale atmospheric circulation response and associated midlatitude impacts. However, such regional dependencies have not been explored in a thorough and systematic manner. To make progress on this issue, this study analyzes ensemble simulations with an atmospheric general circulation model prescribed with sea ice loss separately in nine regions of the Arctic, to elucidate the distinct responses to regional sea ice loss. The results suggest that in some regions, sea ice loss triggers large-scale dynamical responses, whereas in other regions sea ice loss induces only local thermodynamical changes. Sea ice loss in the Barents–Kara Seas is unique in driving a weakening of the stratospheric polar vortex, followed in time by a tropospheric circulation response that resembles the North Atlantic Oscillation. For October–March, the largest spatial-scale responses are driven by sea ice loss in the Barents–Kara Seas and the Sea of Okhotsk; however, different regions assume greater importance in other seasons. The atmosphere responds very differently to regional sea ice losses than to pan-Arctic sea ice loss, and the response to pan-Arctic sea ice loss cannot be obtained by the linear addition of the responses to regional sea ice losses. The results imply that diversity in past studies of the simulated response to Arctic sea ice loss can be partly explained by the different spatial patterns of sea ice loss imposed.


2013 ◽  
Vol 26 (4) ◽  
pp. 1230-1248 ◽  
Author(s):  
James A. Screen ◽  
Ian Simmonds ◽  
Clara Deser ◽  
Robert Tomas

Abstract Arctic sea ice is declining at an increasing rate with potentially important repercussions. To understand better the atmospheric changes that may have occurred in response to Arctic sea ice loss, this study presents results from atmospheric general circulation model (AGCM) experiments in which the only time-varying forcings prescribed were observed variations in Arctic sea ice and accompanying changes in Arctic sea surface temperatures from 1979 to 2009. Two independent AGCMs are utilized in order to assess the robustness of the response across different models. The results suggest that the atmospheric impacts of Arctic sea ice loss have been manifested most strongly within the maritime and coastal Arctic and in the lowermost atmosphere. Sea ice loss has driven increased energy transfer from the ocean to the atmosphere, enhanced warming and moistening of the lower troposphere, decreased the strength of the surface temperature inversion, and increased lower-tropospheric thickness; all of these changes are most pronounced in autumn and early winter (September–December). The early winter (November–December) atmospheric circulation response resembles the negative phase of the North Atlantic Oscillation (NAO); however, the NAO-type response is quite weak and is often masked by intrinsic (unforced) atmospheric variability. Some evidence of a late winter (March–April) polar stratospheric cooling response to sea ice loss is also found, which may have important implications for polar stratospheric ozone concentrations. The attribution and quantification of other aspects of the possible atmospheric response are hindered by model sensitivities and large intrinsic variability. The potential remote responses to Arctic sea ice change are currently hard to confirm and remain uncertain.


Sign in / Sign up

Export Citation Format

Share Document