scholarly journals A Journey from Roots to Bulk Soil: Organic Matter Characterization in the Biosphere 2 Tropical Rainforest

2020 ◽  
Author(s):  
Rachel Cruz Pérez ◽  
Roya AminiTabrizi ◽  
Teverrick Chee ◽  
Hans Gieschen ◽  
Laura Meredith ◽  
...  
CATENA ◽  
2020 ◽  
Vol 195 ◽  
pp. 104753
Author(s):  
D. Balasubramanian ◽  
Yi-Ping Zhang ◽  
John Grace ◽  
Li-Qing Sha ◽  
Yanqiang Jin ◽  
...  

2016 ◽  
Vol 128 (9-10) ◽  
pp. 1352-1366 ◽  
Author(s):  
Allison A. Baczynski ◽  
Francesca A. McInerney ◽  
Scott L. Wing ◽  
Mary J. Kraus ◽  
Paul E. Morse ◽  
...  

Author(s):  
Futao Zhang ◽  
Yunfa Qiao ◽  
Xiaozeng Han ◽  
Bin Zhang

Cultivating crops influences soil organic matter (SOM), but the effect of different crops remains unclear, particularly under long-term monocropping. The objective of this study was to identify how different crops influence the content and chemical structures of SOM under long-term monocropping. Here, soils were sampled (0–20 cm) under 27-year soybean and maize monocropping and separated into different physical fractions. The content and chemical structures of SOM in all fractions were determined. SOM contents were higher under soybean than maize in bulk soil and macroaggregates and their light-fractions instead of microaggregates and silt and clay. The difference in SOM chemical structure was observed in aggregates and density fractions rather than bulk soils and supported by the result of principal component analysis. The proportion of O-alkyl C in macro- and microaggregates and all free light fractions and that of aromatic C in mineral-associated fractions were higher, while that of carbonyl C was lower under maize than soybean. These results demonstrated that different crops monocropping influences the content and chemical structures of SOM, and the variations were mainly in the light-fraction SOM and highlight a higher sensitivity of physical fractions than bulk soil to different crops.  


2021 ◽  
Author(s):  
Sandra Pärnpuu ◽  
Karin Kauer ◽  
Henn Raave

<p>Biochar has been described as relatively stable form of C with long mean residence time due to its predominantly aromatic structure. Addition of biochar can sequester C in the soil, albeit the effect of biochar on native soil organic C decomposition, whether it stimulates or reduces the decomposition of native soil organic matter, requires further understanding. The aim of this research was to study the long-term impact of biochar (BC) on the composition of soil organic matter (SOM) in Fragi-Stagnic Albeluvisol. The work was compiled on the basis of field experiment, set up on a production field in 2011. The experiment was drawn up of two treatments and four replicates, where on half of the replicates slow-pyrolysis hardwood BC (51.8% C, 0.43% N) produced at 500-600 °C was applied 50 Mg ha<sup>-1</sup>. The soil samples were collected from 0-10 cm soil layer in autumn 2020. The air-dried samples were sieved through a 2-mm sieve and divided into two fractions: the particulate organic matter (POM) fraction (soil particles larger than 0.063 mm) and the mineral-associated organic matter (MAOM) (<0.063 mm) by density fractionation method. The soil organic carbon (SOC) and total nitrogen (Ntot) concentrations of bulk soil and fractions were measured. The chemical composition of SOM was studied using <sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy. Bulk soil samples and fractions were pretreated with 10% HF solution before NMR spectroscopy analysis. Two indices were calculated: the ratio of alkyl C/O-alkyl C, which describes the degree of SOM decomposition and soil hydrophobicity (HI): (aromatic-C+alkyl-C)/O/N-Alkyl-C.</p><p>The addition of BC to the soil increased the SOC concentration but did not influence the Ntot concentration and the soil C/N ratio increased from 11.6 to 16.7. The distribution of POM and MAOM was not affected by the BC and POM proportion accounted for an average of 57–58%. The SOC concentrations of POM and MAOM fractions were higher in the BC variant. The BC increased the proportion of aromatic-C in the SOM, as the proportion of aromatic-C in initial BC was high (almost 92%). Initially the BC is inherently highly hydrophobic and increased the HI of bulk soil, POM, and MAOM fractions. The HI increased in line: MAOM<bulk<POM (1.51<1.67<1.97). An increase in HI inhibits the decomposition of SOM and it was also confirmed by a decreased ratio of alkyl-C/O-alkyl-C after the BC addition. The decomposition degree was lowest in POM fraction where SOC concentration was more than doubled due to BC. The suppressed decomposition was caused by the limitation of soil Ntot concentration and increased C/N ratio.</p><p>In conclusion, the effect of BC on the composition of SOM was still evident after 10 years of increasing SOC concentration and soil hydrophobicity and decreasing SOM decomposition degree promoting C sequestration to the soil.</p><p>This work was supported by the Estonian Research Council grant PSG147.</p>


Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 437-443 ◽  
Author(s):  
Matt Forbes ◽  
Erick Bestland ◽  
Rod Wells

Radiocarbon age determinations and stratigraphy suggest that the deposits in Black Creek Swamp on Kangaroo Island record 3 phases of deposition and associated soil development which spanned at least the last 20,000 yr. Four new 14C age determinations on bulk soil organic matter and their stratigraphic context are presented in this paper. Three of these age determinations (FP6: 15,687 ± 110 BP [WK11487]; FP7: 16,326 ± 385 BP [WK11488]; and FP8: 17,618 ± 447 BP [WK11489]), are from the organic-rich fossil layer located 45–75 cm below the current floodplain surface. The fourth, a much younger date, FP5: 5589 ± 259 BP (WK11486), was obtained from the base of the overlying modern soil. The dates for the fossil layer increase systematically with depth and correlate well with 5 previous 14C dates (Hope et al., unpublished), ranging between 15,040 ± 120 BP and 19,000 ± 310 BP. This suggests that the data set represents a possible minimum age of the bulk organic matter, and considering the high organic matter contents of approximately 8%, has implications for the age of the megafauna buried in this layer. The overlying modern soil, with its much younger date, contains lower levels of organic matter (3–7%) and gastropods not seen in the fossil layer. This suggests a substantial change in environmental conditions probably due to an alteration in the floodplain drainage conditions. This chronological and sedimentalogical discontinuity indicates that 2 distinct depositional regimes existed and were separated by up to 10,000 14C yr. A calcareous, sandy silt deposit underlying the fossil layer is a calcarenite deposit with low total organic content and is considered the base of the section; it suggests a third separate depositional episode. As such, the Black Creek Swamp in the southwest corner of Kangaroo Island formed intermittently over at least the last 20,000 yr during 3 distinct depositional phases, one of which was the formation of the fossil-laden, organic-rich floodplain surface, which has a possible minimum age of approximately 15,000 to 19,000 BP.


Sign in / Sign up

Export Citation Format

Share Document