scholarly journals Variation of soil organic matter depends on light-fraction organic matter under long-term monocropping of different crops  

Author(s):  
Futao Zhang ◽  
Yunfa Qiao ◽  
Xiaozeng Han ◽  
Bin Zhang

Cultivating crops influences soil organic matter (SOM), but the effect of different crops remains unclear, particularly under long-term monocropping. The objective of this study was to identify how different crops influence the content and chemical structures of SOM under long-term monocropping. Here, soils were sampled (0–20 cm) under 27-year soybean and maize monocropping and separated into different physical fractions. The content and chemical structures of SOM in all fractions were determined. SOM contents were higher under soybean than maize in bulk soil and macroaggregates and their light-fractions instead of microaggregates and silt and clay. The difference in SOM chemical structure was observed in aggregates and density fractions rather than bulk soils and supported by the result of principal component analysis. The proportion of O-alkyl C in macro- and microaggregates and all free light fractions and that of aromatic C in mineral-associated fractions were higher, while that of carbonyl C was lower under maize than soybean. These results demonstrated that different crops monocropping influences the content and chemical structures of SOM, and the variations were mainly in the light-fraction SOM and highlight a higher sensitivity of physical fractions than bulk soil to different crops.  

2021 ◽  
Author(s):  
Sandra Pärnpuu ◽  
Karin Kauer ◽  
Henn Raave

<p>Biochar has been described as relatively stable form of C with long mean residence time due to its predominantly aromatic structure. Addition of biochar can sequester C in the soil, albeit the effect of biochar on native soil organic C decomposition, whether it stimulates or reduces the decomposition of native soil organic matter, requires further understanding. The aim of this research was to study the long-term impact of biochar (BC) on the composition of soil organic matter (SOM) in Fragi-Stagnic Albeluvisol. The work was compiled on the basis of field experiment, set up on a production field in 2011. The experiment was drawn up of two treatments and four replicates, where on half of the replicates slow-pyrolysis hardwood BC (51.8% C, 0.43% N) produced at 500-600 °C was applied 50 Mg ha<sup>-1</sup>. The soil samples were collected from 0-10 cm soil layer in autumn 2020. The air-dried samples were sieved through a 2-mm sieve and divided into two fractions: the particulate organic matter (POM) fraction (soil particles larger than 0.063 mm) and the mineral-associated organic matter (MAOM) (<0.063 mm) by density fractionation method. The soil organic carbon (SOC) and total nitrogen (Ntot) concentrations of bulk soil and fractions were measured. The chemical composition of SOM was studied using <sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy. Bulk soil samples and fractions were pretreated with 10% HF solution before NMR spectroscopy analysis. Two indices were calculated: the ratio of alkyl C/O-alkyl C, which describes the degree of SOM decomposition and soil hydrophobicity (HI): (aromatic-C+alkyl-C)/O/N-Alkyl-C.</p><p>The addition of BC to the soil increased the SOC concentration but did not influence the Ntot concentration and the soil C/N ratio increased from 11.6 to 16.7. The distribution of POM and MAOM was not affected by the BC and POM proportion accounted for an average of 57–58%. The SOC concentrations of POM and MAOM fractions were higher in the BC variant. The BC increased the proportion of aromatic-C in the SOM, as the proportion of aromatic-C in initial BC was high (almost 92%). Initially the BC is inherently highly hydrophobic and increased the HI of bulk soil, POM, and MAOM fractions. The HI increased in line: MAOM<bulk<POM (1.51<1.67<1.97). An increase in HI inhibits the decomposition of SOM and it was also confirmed by a decreased ratio of alkyl-C/O-alkyl-C after the BC addition. The decomposition degree was lowest in POM fraction where SOC concentration was more than doubled due to BC. The suppressed decomposition was caused by the limitation of soil Ntot concentration and increased C/N ratio.</p><p>In conclusion, the effect of BC on the composition of SOM was still evident after 10 years of increasing SOC concentration and soil hydrophobicity and decreasing SOM decomposition degree promoting C sequestration to the soil.</p><p>This work was supported by the Estonian Research Council grant PSG147.</p>


1994 ◽  
Vol 74 (2) ◽  
pp. 131-138 ◽  
Author(s):  
E. Bremer ◽  
H. H. Janzen ◽  
A. M. Johnston

Crop management influences the quantity and quality of organic matter in agricultural soils. A crop rotation study established at Lethbridge, Alberta in 1951 was sampled in September 1992 to determine the effect of crop management on total, light fraction and mineralizable (10-wk) organic matter contents. Spring wheat was the dominant cropping system; treatments examined include fallow frequency, forage hay production in rotation, manure amendment, N fertilizer application, and native grass. The two latter treatments were introduced in 1985. Total and light fraction organic matter did not vary among phases of the rotation whereas mineralized C tended to be lowest during and shortly after a fallow phase. When averaged across rotation phases, total, light fraction, and mineralized organic matter were enhanced by reduced fallow frequency, manure additons, hay production and native grass. Highest concentrations of total and labile organic concentrations in the 0- to 7.5-cm soil depth were generally found in the continuously-cropped wheat and native grass treatments. Hay production significantly increased soil organic matter in the 15- to 30-cm soil depth. Nitrogen fertilization did not increase soil organic matter in this study, likely because of minimal yield response over the treatment period. Sensitivity of the various indicators to treatment [(highest–lowest)/lowest] was 0.2 for total, 2.5 for light fraction, and 1.5 for mineralized soil organic C. Light fraction organic matter was the most robust indicator of management-induced effects on soil organic matter. Key words: Labile organic matter, fallow frequency, forage hay production, manure, native grass


2018 ◽  
Vol 38 (11) ◽  
Author(s):  
王传杰 WANG Chuanjie ◽  
王齐齐 WANG Qiqi ◽  
徐虎 XU Hu ◽  
高洪军 GAO Hongjun ◽  
朱平 ZHU Ping ◽  
...  

1992 ◽  
Vol 56 (6) ◽  
pp. 1799-1806 ◽  
Author(s):  
H. H. Janzen ◽  
C. A. Campbell ◽  
S. A. Brandt ◽  
G. P. Lafond ◽  
L. Townley-Smith

2019 ◽  
Vol 135 ◽  
pp. 396-406 ◽  
Author(s):  
Bryony E.A. Dignam ◽  
Maureen O'Callaghan ◽  
Leo M. Condron ◽  
Jos M. Raaijmakers ◽  
George A. Kowalchuk ◽  
...  

Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Li Wen ◽  
Kaikai Cheng ◽  
...  

Abstract Soil organic matter (SOM) and its fractions play an important role in maintaining or improving soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime on six functional SOM fractions under a double-cropping rice paddy field of southern China were studied in the current paper. The field experiment included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control (CK). The results showed that coarse unprotected particulate organic matter (cPOM), biochemically, physically–biochemically and chemically protected silt-sized fractions (NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2% of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with control, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction, pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7, 117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different fractions was biochemically protected, followed by chemically and unprotected, and physically protected were the smallest. These results suggested that a physical protection mechanism plays an important role in stabilizing C of paddy soil. In summary, the results showed that higher functional SOM fractions and physical protection mechanism play an important role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.


1997 ◽  
Vol 42 (4) ◽  
pp. 229-240 ◽  
Author(s):  
Francis J. Larney ◽  
Eric Bremer ◽  
H.Henry Janzen ◽  
Adrian M. Johnston ◽  
C.Wayne Lindwall

Sign in / Sign up

Export Citation Format

Share Document